Розробка методу оцінки захищеності складних технічних систем з використанням штучних імунних систем
DOI:
https://doi.org/10.15587/2706-5448.2023.284544Ключові слова:
захищеність складних технічних систем, штучні імунні системи, невизначеність стану складних технічних системАнотація
Забезпечення захищеності складних технічних систем різноманітного функціонального призначення вимагає постійного пошуку нових наукових та практичних підходів з метою забезпечення її належного рівня від зростаючого переліку нових ризиків та загроз. На сьогодні жодна держава у світі не спроможна ізольовано від інших працювати над створенням і впровадженням штучного інтелекту. Технології штучного інтелекту активно застосовуються для вирішення як загальних та вузькоспеціазованих завдань в різних галузях діяльності суспільства. Проблема синтезу управління складними технологічними процесами є актуальним завданням у теорії управління. Перспективним напрямом при проєктуванні подібних складних систем є застосування біоінспірованих алгоритмів, що ефективно використовуються під час вирішення оптимізаційних завдань.
Отже, об’єктом дослідження є складні технічні системи. Предметом дослідження є захищеність стану складних технічних систем. В дослідженні проведено розробку методу оцінки захищеності складних технічних систем з використанням штучних імунних систем. Новизна запропонованого методу полягає у:
‒ врахуванні при розрахунках корегувального коефіцієнту на ступінь невизначеності про стан складної технічної системи;
‒ зменшенні обчислювальних витрат при оцінюванні стану складної технічної системи;
‒ удосконалені процесу реалізації процедури вирішення завдання впливу взаємозв’язків в складній технічній системі;
‒ створенні багаторівневого та взаємопов’язаного опису ієрархічних складних технічних систем;
‒ можливості проведення розрахунків з вихідними даними, що є різні за природою та одиницями вимірювання. Зазначену методику доцільно реалізувати у спеціалізованому програмному забезпеченні, яке використовується для аналізу стану складних технічних систем та прийнятті рішень.
Посилання
- Shevchenko, A. I., Baranovskyi, S. V., Bilokobylskyi, O. V., Bodianskyi, Ye. V., Bomba, A. Ya. et al.; Shevchenko, A. I. (Ed.) (2023). Stratehiia rozvytku shtuchnoho intelektu v Ukraini. Kyiv: IPShI, 305.
- Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zv’iazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1 (5), 35–40.
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
- Rotshtein, A. P. (1999). Intellektualnye tekhnologii identifikatcii: nechetkie mnozhestva, geneticheskie algoritmy, neironnye seti. Vinnitca: UNIVERSUM, 320.
- Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
- Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
- Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
- Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
- Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
- Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
- Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
- Gorelova, G. V. (2013). Kognitivnyi podkhod k imitatcionnomu modelirovaniiu slozhnykh sistem. Izvestiia IuFU. Tekhnicheskie nauki, 3, 239–250.
- Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. doi: https://doi.org/10.5815/ijitcs.2013.11.04
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Andrii Shyshatskyi, Tetiana Stasiuk, Viacheslav Filipov, Oleksii Nalapko, Nadiia Protas, Dmytro Berezanskyi, Michael Zinchenko, Oleksandr Sovik, Vasily Makarchuk, Vitaliy Nechyporuk
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.