Розробка методу управління факторами ризику виникнення аварійних ситуацій під час використання в суднових дизелях палива з низьким вмістом сірки

Автор(и)

  • Сергій Вікторович Сагін Національний університет «Одеська морська академія», Україна https://orcid.org/0000-0001-8742-2836
  • Арсеній Сергійович Сагін Національний університет «Одеська морська академія», Україна https://orcid.org/0009-0000-4965-6121

DOI:

https://doi.org/10.15587/2706-5448.2023.290198

Ключові слова:

аварійна ситуація, динамічні навантаження, екологічні показники, метод управління, морський транспорт, теплові навантаження, фактор ризику

Анотація

Як об’єкт дослідження було обрано процес експлуатації суднових дизелів під час використання палива, вміст сірки в якому не перевищує 0.1 %. Подібні сорти палива характеризуються меншою температурою самозаймання та більшою теплотворною здатністю. Під час згоряння це призводить до збільшення швидкості згоряння палива та ступеню підвищення тиску під час згоряння, саме через це збільшуються динамічні навантаження на деталі циліндро-поршневої групи та підшипники дизеля. Також це (через підвищення температури наприкінці згоряння) створює умови для збільшення концентрації оксидів азоту в випускних газах дизеля. Вказане (а саме зміна динамічних та теплових навантажень, що виникають під час використання в суднових дизелях палив зі зниженим вмістом сірки) призводить до виникнення аварійних ситуацій. Як метод управління ризиком виникнення подібних аварійних ситуації запропоновано переналаштування паливної апаратури високого тиску, а саме зміна кутів випередження подачі палива. Дослідження виконувались на судні, що призначено для перевезення контейнерів та на якому як головний двигун встановлено судновий дизель 8K80ME-8.2-TII MAN-Diesel & Turbo. Як показники, за якими оцінювалась використання та впровадження запропонованого методу, були обрані тиск згоряння, ступінь підвищення тиску під час згоряння, температура випускних газів та концентрація оксидів азоту в випускних газах. Експериментально доведено, що при цьому досягається збільшення екологічної стійкості роботи дизеля на 3.61–10.97 %, підвищення теплової стійкості – до 2.54 %, збільшення динамічної стійкості – до 4.82 %. Це обумовлюється зсувом процесу самозаймання та згоряння в бік розширення та відповідним зменшенням тиску та температури наприкінці згоряння. Найбільш сприятливе використання цього методу на сучасних дизелях, що мають електронну систему управління впорскуванням палива, тому не вимагають механічного переналаштування паливних насосів. З урахуванням цього, саме метод, що заснований на зміні кутів випередження подачі палива, визначено таким, що забезпечує управління факторами ризику виникнення аварійних ситуацій під час використання в суднових дизелях палива з низьким вмістом сірки.

Біографії авторів

Сергій Вікторович Сагін, Національний університет «Одеська морська академія»

Доктор технічних наук, професор, завідувач кафедри

Кафедра суднових енергетичних установок

Арсеній Сергійович Сагін, Національний університет «Одеська морська академія»

Аспірант

Кафедра навігації

Посилання

  1. Maryanov, D. (2021). Development of a method for maintaining the performance of drilling fluids during transportation by Platform Supply Vessel. Technology Audit and Production Reserves, 5 (2 (61)), 15–20. doi: https://doi.org/10.15587/2706-5448.2021.239437
  2. Turpak, S. M., Taran, I. O., Fomin, O. V., Tretiak, O. O. (2018). Logistic technology to deliver raw material for metallurgical production. Scientific Bulletin of National Mining University, 1, 162–169. doi: https://doi.org/10.29202/nvngu/2018-1/3
  3. Fomin, O., Lovska, A., Skok, P., Rogovskii, I. (2021). Determination of the dynamic load of the carrying structure of the hopper wagon with the actual dimensions of structural elements. Technology Audit and Production Reserves, 1 (1 (57)), 6–11. doi: https://doi.org/10.15587/2706-5448.2021.225458
  4. Vorokhobin, I., Burmaka, I., Fusar, I., Burmaka, O. (2022). Simulation Modeling for Evaluation of Efficiency of Observed Ship Coordinates. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (1), 137–141. doi: https://doi.org/10.12716/1001.16.01.15
  5. Sagin, S. V., Sagin, S. S., Madey, V. (2023). Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport. Technology Audit and Production Reserves, 4 (3 (72)), 33–42. doi: https://doi.org/10.15587/2706-5448.2023.286039
  6. Madey, V. V. (2021). Usage of biodiesel in marine diesel engines. The Austrian Journal of Technical and Natural Sciences, 7-8, 18–21. doi: https://doi.org/10.29013/ajt-21-7.8-18-21
  7. Chu Van, T., Ramirez, J., Rainey, T., Ristovski, Z., Brown, R. J. (2019). Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transportation Research Part D: Transport and Environment, 70, 123–134. doi: https://doi.org/10.1016/j.trd.2019.04.001
  8. Sagin, S., Kuropyatnyk, O., Sagin, A., Tkachenko, I., Fomin, O., Píštěk, V., Kučera, P. (2022). Ensuring the Environmental Friendliness of Drillships during Their Operation in Special Ecological Regions of Northern Europe. Journal of Marine Science and Engineering, 10 (9), 1331. doi: https://doi.org/10.3390/jmse10091331
  9. Puškár, M., Tarbajovský, P., Lavčák, M., Šoltésová, M. (2022). Marine Ancillary Diesel Engine Emissions Reduction Using Advanced Fuels. Journal of Marine Science and Engineering, 10 (12), 1895. doi: https://doi.org/10.3390/jmse10121895
  10. Ershov, M. A., Savelenko, V. D., Makhmudova, A. E., Rekhletskaya, E. S., Makhova, U. A., Kapustin, V. M. et al. (2022). Technological Potential Analysis and Vacant Technology Forecasting in Properties and Composition of Low-Sulfur Marine Fuel Oil (VLSFO and ULSFO) Bunkered in Key World Ports. Journal of Marine Science and Engineering, 10 (12), 1828. doi: https://doi.org/10.3390/jmse10121828
  11. Kuropyatnyk, O. A. (2020). Reducing the emission of nitrogen oxides from marine diesel engines. Scientific research of the SCO countries: synergy and integration, 154–160. doi: https://doi.org/10.34660/INF.2020.24.53689
  12. Sagin, S. V., Kuropyatnyk, O. A. (2018). The Use of Exhaust Gas Recirculation for Ensuring the Environmental Performance of Marine Diesel Engines. Naše More, 65 (2), 78–86. doi: https://doi.org/10.17818/nm/2018/2.3
  13. Madey, V. (2022). Assessment of the efficiency of biofuel use in the operation of marine diesel engines. Technology Audit and Production Reserves, 2 (1 (64)), 34–41. doi: https://doi.org/10.15587/2706-5448.2022.255959
  14. Akimova, O., Kravchenko, A. (2018). Development of the methodology of the choice of the route of work of platform supply vessels in the shelf of the seas. Technology Audit and Production Reserves, 5 (2 (43)), 30–35. doi: https://doi.org/10.15587/2312-8372.2018.146322
  15. Salova, T., Lekomtsev, P., Likhanov, V., Lopatin, O., Belov, E. (2023). Development of calculation methods and optimization of working processes of heat engines. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0137793
  16. Minchev, D. S., Varbanets, R. A., Alexandrovskaya, N. I., Pisintsaly, L. V. (2021). Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytechnica, 61 (3), 435–447. doi: https://doi.org/10.14311/ap.2021.61.0435
  17. Maryanov, D. (2022). Control and regulation of the density of technical fluids during their transportation by sea specialized vessels. Technology Audit and Production Reserves, 1 (2 (63)), 19–25. doi: https://doi.org/10.15587/2706-5448.2022.252336
  18. Melnyk, O., Onyshchenko, S., Onishchenko, O. (2023). Development measures to enhance the ecological safety of ships and reduce operational pollution to the environment. Scientific Journal of Silesian University of Technology. Series Transport, 118, 195–206. doi: https://doi.org/10.20858/sjsutst.2023.118.13
  19. Gorb, S., Budurov, M. (2021). Increasing the Accuracy of a Marine Diesel Engine Operation Limit by Thermal Factor. International Review of Mechanical Engineering, 15 (3), 115–121. doi: https://doi.org/10.15866/ireme.v15i3.20865
  20. Varbanets, R., Fomin, O., Píštěk, V., Klymenko, V., Minchev, D., Khrulev, A. et al. (2021). Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters. Journal of Marine Science and Engineering, 9 (3), 321. doi: https://doi.org/10.3390/jmse9030321
  21. Sagin, S. V. (2019). Decrease in mechanical losses in high-pressure fuel equipment of marine diesel engines. Scientific research of the SCO countries: synergy and integration. Part 1, 139–145. doi: https://doi.org/10.34660/INF.2019.15.36258
  22. Maryanov, D. (2022). Reduced energy losses during transportation of drilling fluid by Platform Supply Vessels. Technology Audit and Production Reserves, 2 (1 (64)), 42–50. doi: https://doi.org/10.15587/2706-5448.2022.256473
  23. Sagin, S., Madey, V., Stoliaryk, T. (2021). Analysis of mechanical energy losses in marine diesels. Technology Audit and Production Reserves, 5 (2 (61)), 26–32. doi: https://doi.org/10.15587/2706-5448.2021.239698
  24. Sagin, S., Madey, V., Sagin, A., Stoliaryk, T., Fomin, O., Kučera, P. (2022). Ensuring Reliable and Safe Operation of Trunk Diesel Engines of Marine Transport Vessels. Journal of Marine Science and Engineering, 10 (10), 1373. doi: https://doi.org/10.3390/jmse10101373
  25. Öztürk, E., Can, Ö. (2022). Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend. Energy, 244, 123129. doi: https://doi.org/10.1016/j.energy.2022.123129
  26. Sagin, S. V., Kuropyatnyk, O. A., Zablotskyi, Y. V., Gaichenia, O. V. (2022). Supplying of Marine Diesel Engine Ecological Parameters. Naše More, 69 (1), 53–61. doi: https://doi.org/10.17818/nm/2022/1.7
  27. Sagin, S. V., Kuropyatnyk, O. A. (2021). Using exhaust gas bypass for achieving the environmental performance of marine diesel engines. The Austrian Journal of Technical and Natural Sciences, 7-8, 36–43. doi: https://doi.org/10.29013/ajt-21-7.8-36-43
  28. Melnyk, O., Onyshchenko, S., Onishchenko, O., Lohinov, O., Ocheretna, V. (2023). Integral Approach to Vulnerability Assessment of Ship’s Critical Equipment and Systems. Transactions on Maritime Science, 12 (1). doi: https://doi.org/10.7225/toms.v12.n01.002
  29. Burmaka, I., Vorokhobin, M., Vorokhobin, I., Zhuravska, I. (2022). Forming the area of unacceptable values of the parameters of vessels’ movement for the vessels’ divergence at remote control process. Acta Innovations, 44, 5–17. doi: https://doi.org/10.32933/actainnovations.44.1
  30. Cherniak, L., Varshavets, P., Dorogan, N. (2017). Development of a mineral binding material with elevated content of red mud. Technology Audit and Production Reserves, 3 (3 (35)), 22–28. doi: https://doi.org/10.15587/2312-8372.2017.105609
  31. Sagin, S. V. (2020). Determination of the optimal recovery time of the rheological characteristics of marine diesel engine lubricating oils. Process Management and Scientific Developments, Part 4, 195–202. doi: https://doi.org/10.34660/INF.2020.4.52991
  32. Sagin, S. V., Stoliaryk, T. O. (2021). Comparative assessment of marine diesel engine oils. The Austrian Journal of Technical and Natural Sciences, 7-8, 29–35. doi: https://doi.org/10.29013/ajt-21-7.8-29-35
  33. Stoliaryk, T. (2022). Analysis of the operation of marine diesel engines when using engine oils with different structural characteristics. Technology Audit and Production Reserves, 5 (1 (67)), 22–32. doi: https://doi.org/10.15587/2706-5448.2022.265868
  34. Sagin, S., Karianskyi, S., Madey, V., Sagin, A., Stoliaryk, T., Tkachenko, I. (2023). Impact of Biofuel on the Environmental and Economic Performance of Marine Diesel Engines. Journal of Marine Science and Engineering, 11 (1), 120. doi: https://doi.org/10.3390/jmse11010120
  35. Vedachalam, S., Baquerizo, N., Dalai, A. K. (2022). Review on impacts of low sulfur regulations on marine fuels and compliance options. Fuel, 310, 122243. doi: https://doi.org/10.1016/j.fuel.2021.122243
  36. Zhu, J., Zhou, D., Yang, W., Qian, Y., Mao, Y., Lu, X. (2023). Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy. Energy, 263, 125748. doi: https://doi.org/10.1016/j.energy.2022.125748
  37. Wang, X., Zhu, J., Han, M. (2023). Industrial Development Status and Prospects of the Marine Fuel Cell: A Review. Journal of Marine Science and Engineering, 11 (2), 238. doi: https://doi.org/10.3390/jmse11020238
  38. Winnes, H., Fridell, E., Moldanová, J. (2020). Effects of Marine Exhaust Gas Scrubbers on Gas and Particle Emissions. Journal of Marine Science and Engineering, 8 (4), 299. doi: https://doi.org/10.3390/jmse8040299
  39. Shu, Z., Gan, H., Ji, Z., Liu, B. (2022). Modeling and Optimization of Fuel-Mode Switching and Control Systems for Marine Dual-Fuel Engine. Journal of Marine Science and Engineering, 10 (12), 2004. doi: https://doi.org/10.3390/jmse10122004
  40. Sultanbekov, R., Denisov, K., Zhurkevich, A., Islamov, S. (2022). Reduction of Sulphur in Marine Residual Fuels by Deasphalting to Produce VLSFO. Journal of Marine Science and Engineering, 10 (11), 1765. doi: https://doi.org/10.3390/jmse10111765
Development of method for managing risk factors for emergency situations when using low-sulfur content fuel in marine diesel engines

##submission.downloads##

Опубліковано

2023-10-31

Як цитувати

Сагін, С. В., & Сагін, А. С. (2023). Розробка методу управління факторами ризику виникнення аварійних ситуацій під час використання в суднових дизелях палива з низьким вмістом сірки. Technology Audit and Production Reserves, 5(1(73), 37–43. https://doi.org/10.15587/2706-5448.2023.290198

Номер

Розділ

Технології та системи енергопостачання