Визначення впливу параметрів водіння на гальмівний шлях для зменшення ризиків ДТП

Автор(и)

DOI:

https://doi.org/10.15587/2706-5448.2024.295438

Ключові слова:

дорожньо-транспортні пригоди, гальмівний шлях, симулятор водіння, експериментальний дизайн, гальмівна система транспортного засобу

Анотація

Об'єктом дослідження є найважливіші фактори, що спричиняють дорожньо-транспортні пригоди. Ця робота направлена на дослідження впливу цих факторів та їх взаємодій на функцію гальмівного шляху. Розуміння цієї функції за допомогою імітаційного моделювання та порівняння результатів з математичними моделями та експериментальними тестами допоможе зменшити кількість дорожньо-транспортних пригод. Значна частина дорожньо-транспортних пригод пов'язана з недотриманням нормативної швидкості, що пов'язано з гальмівною системою транспортного засобу (зчепленням, дорогою та шинами) та погодними умовами. Кампанія з вимірювання швидкості на приміських дорогах була проведена з метою вивчення поведінки водіїв та дотримання швидкісного режиму в декількох містах Алжира. Проведено експериментальне моделювання впливу швидкості, антиблокувальної системи, погодних умов, зчеплення з дорогою та їх взаємодії на гальмівний шлях транспортного засобу з використанням методу експериментального дизайну в поєднанні з випробуваннями на симуляторі водіння. Для дослідження впливу різних параметрів руху на гальмівний шлях необхідна була розробка експериментального плану з діапазонами зміни швидкості (70 і 130 км/год). Розроблена математична модель була підтверджена результатами, отриманими на симуляторі. Метод експериментального дизайну та результати на симуляторі були використані для виявлення та визначення важливих параметрів, які впливають на гальмівний шлях. Результати показують, що на гальмівний шлях (ГШ) в основному впливають швидкість транспортного засобу (S), погодні умови (M) та їх взаємодія. Збільшення за рахунок швидкості призводить до збільшення гальмівного шляху з оціночним ефектом 54,30 м. Коли швидкість змінюється від нижчого експериментального рівня (70 км/год) до вищого (130 км/год), гальмівний шлях збільшується на 54,30 м. Аналіз кампанії з вимірювання швидкості на дорогах показав, що 55 % учасників дорожнього руху не дотримуються швидкісного режиму. Результати, отримані в цьому дослідженні, можуть бути застосовані до інших країн, лише параметри мають бути скориговані.

Біографії авторів

Nesrine Boulmedais, Mentouri Brothers University Constantine 1

Postgraduate Student

Laboratory of Transports and Environment Engineering

Lyes Bidi, Mentouri Brothers University Constantine 1

PhD

Institute of Applied Sciences and Techniques

Rachid Chaib, Mentouri Brothers University Constantine 1

Professor

Department of Transportation Engineering

Laboratory of Transports and Environment Engineering

Salim Boukebbab, Mentouri Brothers University Constantine 1

Professor

Department of Transport Engineering

Laboratory of Transports and Environment Engineering

Mohamed Salah Boulahlib, Mentouri Brothers University Constantine 1

Professor

Department of Transport Engineering

Laboratory of Transports and Environment Engineering

Посилання

  1. Traumatismes dus aux accidents de la circulation (2023). World Health Organization. Available at: https://www.who.int/fr/news-room/fact-sheets/detail/road-traffic-injuries
  2. Global status report on road safety 2015 (2015). World Health Organization. Available at: https://www.afro.who.int/publications/global-status-report-road-safety-2015#:~:text=The%20Global%20status%20report%20on,rates%20in%20low%2Dincome%20countries
  3. Global Status Report on Road Safety (2017). World Health Organization. Available at: https://www.afro.who.int/sites/default/files/2017-06/vid_global_status_report_en.pdf
  4. Accidents-Bilan 2020: le moins tragique depuis trois décennies (2021). Algérie press service. Available at: https://www.aps.dz/societe/117350-accidents-bilan-2020-le-moins-tragique-depuis-trois-decennies
  5. D’Onghia, F., Delhomme, P., Dubois, N. (2008). How to Convince Drivers to Respect Speed Limits? Effects of Framing and the Presence of an Image on Attitudes about Speeding and the Intent to Respect Speed Limits. Bulletin de psychologie, 498 (6), 561–576. doi: https://doi.org/10.3917/bupsy.498.0561
  6. Podoprigora, N., Dobromirov, V., Pushkarev, A., Lozhkin, V. (2017). Methods of Assessing the Influence of Operational Factors on Brake System Efficiency in Investigating Traffic Accidents. Transportation Research Procedia, 20, 516–522. doi: https://doi.org/10.1016/j.trpro.2017.01.084
  7. Statistical report n°: 830, national car park at 31/12/2017 (2017). National Statistics Office, Algiers.
  8. Boughédaoui, M., Chikhi, S., Driassa, N., Kerbachi, R., Joumard, R. (2009). Caractérisation du parc de véhicule algérien et son usage. Environment and Transport in different contexts/Environnement et Transports dans des contextes différents, 201–208.
  9. Karwowska, E., Simiński, P. (2015). Analysis of the influence of perception time on stopping distance from the angle of psychophysical factors. Archiwum Motoryzacji, 70 (4), 59–74.
  10. Gürbüz, H., Buyruk, S. (2019). Improvement of safe stopping distance and accident risk coefficient based on active driver sight field on real road conditions. IET Intelligent Transport Systems, 13 (12), 1843–1850. doi: https://doi.org/10.1049/iet-its.2019.0322
  11. Cho, J. R., Choi, J. H., Yoo, W. S., Kim, G. J., Woo, J. S. (2006). Estimation of dry road braking distance considering frictional energy of patterned tires. Finite Elements in Analysis and Design, 42 (14-15), 1248–1257. doi: https://doi.org/10.1016/j.finel.2006.06.005
  12. Koylu, H., Tural, E. (2021). Experimental study on braking and stability performance during low speed braking with ABS under critical road conditions. Engineering Science and Technology, an International Journal, 24 (5), 1224–1238. doi: https://doi.org/10.1016/j.jestch.2021.02.001
  13. Toma, M., Andreescu, C., Stan, C. (2018). Influence of tire inflation pressure on the results of diagnosing brakes and suspension. Procedia Manufacturing, 22, 121–128. doi: https://doi.org/10.1016/j.promfg.2018.03.019
  14. Carcaterra, A., Roveri, N. (2013). Tire grip identification based on strain information: Theory and simulations. Mechanical Systems and Signal Processing, 41 (1-2), 564–580. doi: https://doi.org/10.1016/j.ymssp.2013.06.002
  15. Imprialou, M.-I. M., Quddus, M., Pitfield, D. E., Lord, D. (2016). Re-visiting crash–speed relationships: A new perspective in crash modelling. Accident Analysis and Prevention, 86, 173–185. doi: https://doi.org/10.1016/j.aap.2015.10.001
  16. Choudhary, P., Imprialou, M., Velaga, N. R., Choudhary, A. (2018). Impacts of speed variations on freeway crashes by severity and vehicle type. Accident Analysis and Prevention, 121, 213–222. doi: https://doi.org/10.1016/j.aap.2018.09.015
  17. Cheng, Z., Lu, J., Li, Y. (2018). Freeway crash risks evaluation by variable speed limit strategy using real-world traffic flow data. Accident Analysis and Prevention, 119, 176–187. doi: https://doi.org/10.1016/j.aap.2018.07.009
  18. Bergel-Hayat, R., Debbarh, M., Antoniou, C., Yannis, G. (2013). Explaining the road accident risk: Weather effects. Accident Analysis and Prevention, 60, 456–465. doi: https://doi.org/10.1016/j.aap.2013.03.006
  19. Chand, A., Jayesh, S., Bhasi, A. B. (2021). Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings, 47, 5135–5141. doi: https://doi.org/10.1016/j.matpr.2021.05.415
  20. Naik, B., Tung, L.-W., Zhao, S., Khattak, A. J. (2016). Weather impacts on single-vehicle truck crash injury severity. Journal of Safety Research, 58, 57–65. doi: https://doi.org/10.1016/j.jsr.2016.06.005
  21. Malin, F., Norros, I., Innamaa, S. (2019). Accident risk of road and weather conditions on different road types. Accident Analysis and Prevention, 122, 181–188. doi: https://doi.org/10.1016/j.aap.2018.10.014
  22. Heqimi, G., Gates, T. J., Kay, J. J. (2018). Using spatial interpolation to determine impacts of annual snowfall on traffic crashes for limited access freeway segments. Accident Analysis and Prevention, 121, 202–212. doi: https://doi.org/10.1016/j.aap.2018.09.014
  23. Moomen, M., Rezapour, M., Ksaibati, K. (2019). An investigation of influential factors of downgrade truck crashes: A logistic regression approach. Journal of Traffic and Transportation Engineering (English Edition), 6 (2), 185–195. doi: https://doi.org/10.1016/j.jtte.2018.03.005
  24. Gürbüz, H., Buyruk, S. (2016). The prototype design and tests of vibration controlled driver warning system from the steering wheel. International Journal of Automotive Engineering and Technologies, 5 (3), 77–84. doi: https://doi.org/10.18245/ijaet.287174
  25. Andrieux, A., Lengellé, R., Beauseroy, P., Chabanon, C. (2008). A Novel Approach to Real Time Tire-Road Grip and Slip Monitoring. IFAC Proceedings Volumes, 41 (2), 7104–7109. doi: https://doi.org/10.3182/20080706-5-kr-1001.01204
  26. Salehi, M., Noordermeer, J. W. M., Reuvekamp, L. A. E. M., Dierkes, W. K., Blume, A. (2019). Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking. Tribology International, 131, 191–199. doi: https://doi.org/10.1016/j.triboint.2018.10.011
  27. Soulmana, B., Boukebbab, S., Boulahlib, M. S. (2021). Hand position on steering wheel during fatigue and sleepiness case: driving simulator. Advances in transportation studies, 53, 69–84.
  28. de Groot, S., Centeno Ricote, F., de Winter, J. C. F. (2012). The effect of tire grip on learning driving skill and driving style: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 15 (4), 413–426. doi: https://doi.org/10.1016/j.trf.2012.02.005
  29. Hault-Dubrulle, A., Robache, F., Pacaux, M.-P., Morvan, H. (2011). Determination of pre-impact occupant postures and analysis of consequences on injury outcome. Part I: A driving simulator study. Accident Analysis and Prevention, 43 (1), 66–74. doi: https://doi.org/10.1016/j.aap.2010.07.012
  30. Davenne, D., Lericollais, R., Sagaspe, P., Taillard, J., Gauthier, A., Espié, S., Philip, P. (2012). Reliability of simulator driving tool for evaluation of sleepiness, fatigue and driving performance. Accident Analysis and Prevention, 45, 677–682. doi: https://doi.org/10.1016/j.aap.2011.09.046
  31. Auberlet, J.-M., Pacaux, M.-P., Anceaux, F., Plainchault, P., Rosey, F. (2010). The impact of perceptual treatments on lateral control: A study using fixed-base and motion-base driving simulators. Accident Analysis and Prevention, 42 (1), 166–173. doi: https://doi.org/10.1016/j.aap.2009.07.017
  32. Branzi, V., Domenichini, L., La Torre, F. (2017). Drivers’ speed behaviour in real and simulated urban roads – A validation study. Transportation Research Part F: Traffic Psychology and Behaviour, 49, 1–17. doi: https://doi.org/10.1016/j.trf.2017.06.001
  33. Nichici, A., Cicală, E. F, Mee, R. (1996). Experimental data processing. Cursşiaplicaţii, Timişoara, 63.
  34. Goupy, J., Creighton, L. (2006). Introduction aux plans d'expériences-2ème édition-Livre+ CD-Rom. Hachette.
  35. Vigier, M. (1988). Pratique des plans d'experiences: methodologie Taguchi. Éditions d'Organisation.
  36. Cicală, E. F. (2005). Metoda experimentelor factoriale: proiectarea experimentelor, modelare, optimizare. Timişoara: Editura Politehnica.
Identifying the effects of driving parameters on stopping distance to reduce accident risks

##submission.downloads##

Опубліковано

2024-02-16

Як цитувати

Boulmedais, N., Bidi, L., Chaib, R., Boukebbab, S., & Boulahlib, M. S. (2024). Визначення впливу параметрів водіння на гальмівний шлях для зменшення ризиків ДТП. Technology Audit and Production Reserves, 1(2(75), 53–61. https://doi.org/10.15587/2706-5448.2024.295438

Номер

Розділ

Системи та процеси керування