Концептуальні засади ройового застосування безпілотних літальних апаратів як інтелектуальних засобів радіоелектронної боротьби

Автор(и)

  • Вадим Іванович Слюсар Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0000-0002-2912-3149
  • Вадим Геннадійович Козлов Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0000-0002-7708-6143
  • Сергій Петрович Почернін Центральний науково-дослідний інституту озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0000-0002-4804-3259
  • Ірина Борисівна Налапко Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0009-0006-7976-854X

DOI:

https://doi.org/10.15587/2706-5448.2025.329989

Ключові слова:

рій, перешкоди, технології, система, ефективність, інтеграція, алгоритм, методи, протидія, керування

Анотація

У якості об’єкта дослідження розглядається процес функціонування рою безпілотних літальних апаратів (БпЛА), який оснащений технологіями штучного інтелекту, як інтелектуальних засобів радіоелектронної боротьби (РЕБ). Основна увага зосереджена на їх взаємодії та ефективності функціонування, їх адаптивних можливостей у динамічно змінному та складному електромагнітному середовищі.

Однією з ключових проблем є забезпечення надійної, стійкої та гнучкої координації дій рою в умовах електромагнітного впливу радіоелектронних засобів (РЕЗ) противника. Координація дій та заходів рою повинна передбачати безперервний моніторинг спектру, своєчасну адаптацію до ворожих контрзаходів.

Для вирішення цієї проблеми запропоновано створення адаптивної ройової архітектури, що реалізує принципи децентралізованого управління з використанням алгоритмів машинного навчання, мультиагентного підходу та програмно-конфігураційної архітектури радіосистем (SDR). Розроблений підхід базується на застосуванні когнітивних стратегій взаємодії між БпЛА та формуванні динамічної мережевої структури, що самостійно відновлюється у разі пошкоджень або впливу перешкод.

Запропонований концептуальний підхід дозволяє суттєво підвищити ефективність впливу на РЕЗ противника шляхом динамічного просторово-часового розподілу перешкод з урахуванням тактичної обстановки та спектральних характеристик загроз.

Передбачено інтеграцію ударних та розвідувальних БпЛА у єдину ройову структуру з автономною координацією дій, що розширює функціональність рою від постановки багаточастотних перешкод до виявлення, супроводження та нейтралізації критично важливих об’єктів.

Такий підхід забезпечує високий рівень автономності, адаптивності та живучості безпілотних платформ у складних умовах радіоелектронного протиборства, а також створює передумови для суттєвого підвищення ефективності ведення бойових дій у сучасному високотехнологічному середовищі шляхом інтеграції розвідувально-ударних функцій та засобів РЕБ в єдину інформаційну систему.

Біографії авторів

Вадим Іванович Слюсар, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України

Доктор технічних наук, професор, IEEE Member

Вадим Геннадійович Козлов, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України

Кандидат технічних наук

Науково-організаційний відділ

Сергій Петрович Почернін, Центральний науково-дослідний інституту озброєння та військової техніки Збройних Сил України

Науково-організаційний відділ

Ірина Борисівна Налапко, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України

Науково-інформаційний відділ

Посилання

  1. Clark, B. (2022). The Fall and Rise of Russian Electronic Warfare. IEEE Spectrum. Available at: https://spectrum.ieee.org/the-fall-and-rise-of-russian-electronic-warfare
  2. Edmonds, J. A., Bendett, S. (2023). Russia’s Use of Uncrewed Systems in Ukraine. CNA Research Memorandum, DRM-2022-U-034223-Final. Available at: https://www.cna.org/reports/2023/05/Russias-Use-of-Uncrewed-Systems-in-Ukraine.pdf
  3. Sliusar, V. I. (2001). Mikroplany: ot shedevrov konstruirovaniia k seriinym sistemam. Konstruktor, 8, 58–59. Available at: https://slyusar.kiev.ua/rk0102_SLYUSAR.pdf
  4. Kovtunenko, O. P., Bohucharskyi, V. V., Sliusar, V. I., Fedorov, P. M. (2006). Zbroia na netradytsiinykh pryntsypakh dii (stan, tendentsii, pryntsypy dii ta zakhyst vid nei). Poltava: PVIZ, 248. Available at: https://slyusar.kiev.ua/NOTTRAD.pdf
  5. Terenyk, D., Kharchenko, V. (2024). Choosing strategies for deployment and ensuring the reliability of a UAV swarm to support communications in destruction conditions. Innovative technologies and scientific solutions for industries, 3 (29), 91–103. https://doi.org/10.30837/2522-9818.2024.3.091
  6. Horbulin, В. P., Mosov, С. P. (2024). Drone swarms are the culmination of the droneization of wars. Visnik Nacionalnoi Academii Nauk Ukraini, 3, 3–11. https://doi.org/10.15407/visn2024.03.003
  7. Ricardo, J. A., Giacomossi, L., Trentin, J. F. S., Brancalion, J. F. B., Maximo, M. R. O. A., Santos, D. A. (2023). Cooperative Threat Engagement Using Drone Swarms. IEEE Access, 11, 9529–9546. https://doi.org/10.1109/access.2023.3239817
  8. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V. (2016). Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles. Journal of Intelligent & Robotic Systems, 84 (1-4), 469–492. https://doi.org/10.1007/s10846-016-0338-z
  9. Li, R., Ma, H. (2020). Research on UAV Swarm Cooperative Reconnaissance and Combat Technology. 2020 3rd International Conference on Unmanned Systems (ICUS). Harbin, 996–999. https://doi.org/10.1109/icus50048.2020.9274902
  10. Chen, W., Liu, J., Guo, H., Kato, N. (2020). Toward Robust and Intelligent Drone Swarm: Challenges and Future Directions. IEEE Network, 34 (4), 278–283. https://doi.org/10.1109/mnet.001.1900521
  11. Sherman, M., Shao, S., Sun, X., Zheng, J. (2025). Counter UAV Swarms: Challenges, Considerations, and Future Directions in UAV Warfare. IEEE Wireless Communications, 32 (1), 190–196. https://doi.org/10.1109/mwc.003.2400047
  12. Kim, G. S., Lee, S., Woo, T., Park, S. (2024). Cooperative Reinforcement Learning for Military Drones over Large-Scale Battlefields. IEEE Transactions on Intelligent Vehicles, 1–11. https://doi.org/10.1109/tiv.2024.3472213
  13. Wang, S., Liu, Z., Nie, C., Zhang, Y. (2024). Large-Scale Drone Swarm Countermeasures Technology Based on MF-Q Algorithm. 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). Nanjing, 125–129. https://doi.org/10.1109/ainit61980.2024.10581464
  14. Zhou, Z., Tang, J., Feng, W., Wong, K. K. (2023). Energy-aware Routing Protocol for UAV Electronic Warfare using Graph Attention and Fuzzy Reward. GLOBECOM 2023 – 2023 IEEE Global Communications Conference, 1860–1865. https://doi.org/10.1109/globecom54140.2023.10437213
  15. Demirbaga, U., Aujla, G. S., Singh, M., Singh, A., Sun, H., Camp, J. (2024). An Intelligent Monitoring and Warning Framework in Drone Swarm Digital Twin Systems. ICC 2024 – IEEE International Conference on Communications. Denver 1945–1950. https://doi.org/10.1109/icc51166.2024.10622736
  16. Xiaoning, Z. (2020). Analysis of military application of UAV swarm technology. 2020 3rd International Conference on Unmanned Systems (ICUS). Harbin, 1200–1204. https://doi.org/10.1109/icus50048.2020.9274974
  17. Aboltins, A., Tihomorskis, N. (2023). Software-Defined Radio Implementation and Performance Evaluation of Frequency-Modulated Antipodal Chaos Shift Keying Communication System. Electronics, 12 (5), 1240. https://doi.org/10.3390/electronics12051240
  18. Zitouni, R., Bouaroua, H., Senouci, B. (2025). Hardware-Software Codesign for Software Defined Radio: IEEE 802.11p Receiver Case Study. arXiv preprint. https://doi.org/10.48550/arXiv.2003.09525
  19. Dong, Y., Wu, F., Zhang, S., Chen, G., Hu, Y., Yano, M. (2025). Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions. arXiv preprint. https://doi.org/10.48550/arXiv.2504.11967
  20. Slyusar, V. (2020). Situation Awareness Exchange Methods for a Swarm of Autonomous Systems. EasyChair Preprint No. 4513. https://doi.org/10.13140/RG.2.2.19829.81125
  21. Kaelbling, L. P., Littman, M. L., Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research, 4, 237–285. https://doi.org/10.1613/jair.301
  22. Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. IEEE Transactions on Neural Networks, 9 (5), 1054–1054. https://doi.org/10.1109/tnn.1998.712192
  23. Slyusar, V., Protsenko, M., Chernukha, A., Melkin, V., Biloborodov, O., Samoilenko, M. et al. (2022). Improving the model of object detection on aerial photographs and video in unmanned aerial systems. Eastern-European Journal of Enterprise Technologies, 1 (9 (115)), 24–34. https://doi.org/10.15587/1729-4061.2022.252876
  24. Slyusar, V. (2019). Ukraine's Update to JCG GBAD. JCG GBAD Meeting. https://doi.org/10.13140/RG.2.2.18389.54242
  25. Alqudsi, Y., Makaraci, M. (2025). UAV swarms: research, challenges, and future directions. Journal of Engineering and Applied Science, 72 (1). https://doi.org/10.1186/s44147-025-00582-3
  26. Slyusar, V. I., Smolyar, V. G. (2003). Communication channels frequency multiplexing on the basis of superrayleigh signals resolution. Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 46 (7). Available at: https://www.researchgate.net/publication/293151202_Communication_channels_multiplexing_on_the_basis_of_superrayleigh_signals_resolution_with_respect_to_arrival_time
  27. Slyusar, V. I., Smolyar, V. G. (2004). Non-orthogonal discrete frequency signal modulation method for narrowband communication channels. Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 47 (4). Available at: https://www.researchgate.net/publication/293141781_Non-orthogonal_discrete_frequency_signal_modulation_method_for_narrowband_communication_channels
  28. Slyusar, V., Bihun, N. (2024). Integrating Mixture of Experts into Transformers Architecture to Control UAV Swarms. The 14-th IEEE International Conference on Dependable Systems, Services and Technologies. DESSERT’2024. Athens, 6.
  29. Joint Chiefs of Staff, Joint Publication 3-60: Joint Targeting (2018). Washington. Available at: https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Joint_Staff/21-F-0520_JP_3-60_9-28-2018.pdf
  30. ATP 2-01.3: Intelligence Preparation of the Battlefield. Washington: Headquarters, Department of the Army. Available at: https://home.army.mil/wood/application/files/8915/5751/8365/ATP_2-01.3_Intelligence_Preparation_of_the_Battlefield.pdf
  31. NATO STANAG 4670 – ATP-3.3.7 (2014). Guidance for the Training of Unmanned Aircraft Systems (UAS) Operators. NATO Standardization Agency. Available at: http://everyspec.com/NATO/NATO-STANAG/download.php?spec=SRANAG-4670_ED-3.052054.pdf Last accessed: 14.02.2025
  32. Dovbysh, I. O., Muraviov, O. V., Galagan, R. M., Bohdan, H. A., Momot, A. S. (2023). Power systems and energy sources of modern uavs. Scientific Notes of Taurida National V. I. Vernadsky University. Series: Technical Sciences, 5, 16–21. https://doi.org/10.32782/2663-5941/2023.5/04
  33. Pham, K. L., Leuchter, J., Bystricky, R., Andrle, M., Pham, N. N., Pham, V. T. (2022). The Study of Electrical Energy Power Supply System for UAVs Based on the Energy Storage Technology. Aerospace, 9 (9), 500. https://doi.org/10.3390/aerospace9090500
  34. Swider-Lyons, K. E., Stroman, R. O., Rodgers, J., Page, G. (2016). Hydrogen Fuel Cells for Small Unmanned Air Vehicles. Presented at the 2016 U.S. Department of Energy Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting. Washington. Available at: https://www.energy.gov/sites/prod/files/2016/05/f32/fcto_webinarslides_h2_fc_small_unmanned_air_vehicles_052616.pdf
  35. Shen, Z., Liu, S., Zhu, W., Ren, D., Feng, Y., Xu, Q. (2024). A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-rotor Drones. https://doi.org/10.20944/preprints202402.0484.v1
  36. Genovese, M., Fragiacomo, P. (2023). Hydrogen refueling station: Overview of the technological status and research enhancement. Journal of Energy Storage, 61, 106758. https://doi.org/10.1016/j.est.2023.106758
  37. MIL-DTL-83133F Detail Specification Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37). Available at: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-DTL/download.php?spec=MIL-DTL-83133F.011933.pdf Last accessed: 14.02.2025
  38. Jiao, S., Zhang, G., Zhou, M., Li, G. (2023). A Comprehensive Review of Research Hotspots on Battery Management Systems for UAVs. IEEE Access, 11, 84636–84650. https://doi.org/10.1109/access.2023.3301989
  39. Muñoz-Zavala, A. E., Macías-Díaz, J. E., Alba-Cuéllar, D., Guerrero-Díaz-de-León, J. A. (2024). A Literature Review on Some Trends in Artificial Neural Networks for Modeling and Simulation with Time Series. Algorithms, 17 (2), 76. https://doi.org/10.3390/a17020076
  40. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J. (2018). An Introduction to Deep Reinforcement Learning. Foundations and Trends® in Machine Learning, 11 (3-4), 219–354. https://doi.org/10.1561/2200000071
Conceptual foundations of the swarm employment of unmanned aerial vehicles as intelligent means of electronic warfare

##submission.downloads##

Опубліковано

2025-05-22

Як цитувати

Слюсар, В. І., Козлов, В. Г., Почернін, С. П., & Налапко, І. Б. (2025). Концептуальні засади ройового застосування безпілотних літальних апаратів як інтелектуальних засобів радіоелектронної боротьби. Technology Audit and Production Reserves, 3(2(83), 71–80. https://doi.org/10.15587/2706-5448.2025.329989

Номер

Розділ

Системи та процеси керування