The analysis of biological ways of restoration of the oil-contaminated soils

Authors

  • Lesya Shevchyk L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Naukova str., 3 a, Lviv, Ukraine, 79053, Ukraine https://orcid.org/0000-0002-6394-8742
  • Olga Romaniuk L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Naukova str., 3 a, Lviv, Ukraine, 79053, Ukraine https://orcid.org/0000-0002-6249-2683

DOI:

https://doi.org/10.15587/2519-8025.2017.94052

Keywords:

oil-contaminated soils, bioremediation, phytoremediation, microorganisms-oil-destructors, plants-remediants, degradation of lands, restoration of soils

Abstract

The aim of the article was the analysis of modern biological methods of restoration of oil-contaminated soils and possibilities of their use at the early stages of elimination of oil-contamination. The effective biological ways of restoration of contaminated soils include bioremediation and phytoremediation. The methods of bioremediation provide the activization of existing microflora by creation of optimal conditions at the expanse of tillage, mellowing, introduction of mineral manures, sorbents and other or use of microorganisms-oil-destructors, introduced in contamined soil in significant amounts. Bioremediation utilizes the oil hydrocarbons rather successfully. But this method has a series of disadvantages, especially – many stages, high cost prices, conditioned by additional expenditures for preparatory works and for creation of the optimal conditions of bioremediation. At the same time the artificial introduction of microorganisms in oil-contaminated soils is connected with certain biological risk. The methods of phytoremediation are effective and attractive because of their naturaless, eco-friendliness, easiness and economy, are characterized with longer influence and stable improvement of environmental situation. The analysis of literary data demonstrated that the prospective plants for restoration of oil-contaminated soils are legumes, able to assimilate the nitrogen of atmosphere, perennial herbal plants and stable arboreal species, able to symbiosis with nitrogen-fixing microorganisms.

The analysis of the literary sources of biological ways of restoration of oil-contaminated soils indicates the prospectiveness of phytoremediation methods using perennial actinorhizal plants, especially sea buckthorn that can be used independently for restoration of oil-contaminated soils. This methos is characterized with economy, esthetics, relative easiness of realization, possibility of usage on big areas and prolongation of effect. Phytoremediation of oil-contaminated soils using sea buckthorn alongside with cleansing of pollutants provides the improvement of physical-chemical and biological properties of soil, prevents erosion, restrains the penetration of harmful substances in air, soil and underground water that provides the stable restoration of natural ecosystems

Author Biographies

Lesya Shevchyk, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Naukova str., 3 a, Lviv, Ukraine, 79053

Junior researcher

Department of Physics and Chemistry of Fossil Fuels

Olga Romaniuk, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Naukova str., 3 a, Lviv, Ukraine, 79053

PhD, senior researcher

Department of Physics and Chemistry of Fossil Fuels

References

  1. Drugov, Yu. S., Rodyn, A. A. (2011). Ekologicheskie analizy pri razlivax nefti i nefteproduktov [Ecological analyzes in case of oil spills and oil products]. Moscow: BINOM, Laboratorija znanij, 270.
  2. Loginov, O. N., Silishhev, N. N., Bojko, T. F., Galimzyanova, N. F. (2000). Biotexnologicheskie metody ochistki okruzhayushhej sredy ot texnogennyx zagryaznenij [Biotechnological methods of cleaning of the environment from technogenic pollution]. Ufa: Gosudarstvennoe izdatelstvo nauchnotexnicheskoj literatury ''Reaktiv'', 100.
  3. Singh, A., Kuhad, R. C., Ward, O. P. (Eds.) (2009). Advances in Applied Bioremediation (Soil Biology). Verlag Berlin Heidelberg, 361. doi: 10.1007/978-3-540-89621-0
  4. Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74 (1), 63–67. doi: 10.1016/s0960-8524(99)00144-3
  5. Lee, E. H., Kang, Y. S., Cho, K. S. (2011). Bioremediation of diesel contaminated soils by natural attenuation, Biostimulation and Bioaugmentation employing Rhodococcus sp. EH831. Korean J. Microbiol. Biotechnol, 39 (1), 86–92.
  6. Velkov, V. V. (1995). Bioremediaciya: principy, problemy, podxody [Bioremediation: principles, problems, approaches]. Biotechnology, 3-4, 70–76.
  7. Kireeva, N. A. (1994). Mikrobiologicheskie processy v neftezagryaznennyx pochvax [Microbiological processes in the oil-contaminated soils]. Ufa: publishing house BashGu, 171.
  8. Vasudevan, N., Rajaram, P. (2001). Bioremediation of oil sludge-contaminated soil. Environment International, 26 (5-6), 409–411. doi: 10.1016/s0160-4120(01)00020-4
  9. Gabbasova, I. M.; Haziev, F. H. (Ed.) (2004). Degradaciya i rekultivaciya pochv Bashkortostana [The degradation and remediation of soils of Bashkortostan]. Ufa: Gilem, 284.
  10. Kireeva, N. A., Novoselova, N. I., Haziev, F. X. (1998). Aktivnost karbogidraz v neftezagryaznennyx pochvax [The activity of carbohydrases in oil-contaminated soils]. Soil science, 12, 1444–1448.
  11. Margesin, R., Zimmerbauer, A., Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40 (4), 339–346. doi: 10.1016/s0045-6535(99)00218-0
  12. Kolisnichenko, A. V., Marchenko, A. I., Pobezhimova, T. P., Zykova, V. V. (2004). Processy biodegradacii v neftezagryaznyonnyx pochvax [The processes of biodegradation of oil-contaminated soils]. Moscow: Promekobezopasnost, 194.
  13. Rhykerd, R. L., Crews, B., McInnes, K. J., Weaver, R. W. (1999). Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresource Technology, 67 (3), 279–285. doi: 10.1016/s0960-8524(98)00114-x
  14. Kireeva, N. A., Vodopyanov, V. V., Miftaxova, A. M. (2001). Biologicheskaya aktivnost neftezagryaznennyx pochv [The biological activity of oil-contaminated soils]. Ufa: Gilem, 376.
  15. Salanginas, L. A. (2003). Izmenenie svojstv pochv pod vozdejstviem nefti i razrabotka sistemy mer po ix reabilitacii [Changing the properties of soils under the influence of oil and the development of a system of measures for their rehabilitation]. Ekaterinburg: Elita-Kompleks, 412.
  16. Suxonosova, A. N., Burlaka, V. A., Bykov, D. E., Burlaka, I. V., Burlaka, N. V. (2009). Ochistka pochv ot neftyanogo zagryazneniya i ocenka ee effektivnosti [Clean soils from oil pollution and evaluation of its effectiveness]. Ecology and industry of Russia, 18–20.
  17. Buxgalter, E. B., Galiulin, R. V., Bashkin, V. N., Sidorova, I. E., Grunvald, A. V., Semencov, A. Yu., Galiulina, R. A. (2008). Rekultivaciya pochvy, zagryaznennoj gazovym kondensatom [Remediation of soil contaminated by gas condensate]. Zashhita okruzhayushhej sredy v neftegazovom komplekse, 2, 16–18.
  18. Gudin, C., Syratt, W. J. (1975). Biological aspects of land rehabilitation following hydrocarbon contamination. Environmental Pollution (1970), 8 (2), 107–112. doi: 10.1016/0013-9327(75)90020-8
  19. Hoeppel, R. E., Hinchee, R. E., Arthur, M. F. (1991). Bioventing soils contaminated with petroleum hydrocarbons. Journal of Industrial Microbiology, 8 (3), 141–146. doi: 10.1007/bf01575846
  20. Nechaeva, I. A., Filonov, A. E., Axmetov, L. I. (2009). Stimulyaciya mikrobnoj destrukcii nefti v pochve putem vneseniya bakterialnoj associacii i mineralnogo udobreniya v laboratornyx i polevyx usloviyax [The stimulation of microbial degradation of oil in the soil by making the association of bacterial and mineral fertilizers in laboratory and field conditions]. Biotechnology, 1, 64–70.
  21. Ouyang, W., Liu, H., Murygina, V., Yu, Y., Xiu, Z., Kalyuzhnyi, S. (2005). Comparison of bio-augmentation and composting for remediation of oily sludge: A field-scale study in China. Process Biochemistry, 40 (12), 3763–3768. doi: 10.1016/j.procbio.2005.06.004
  22. Pleshakova, E. V., Muratova, A. Yu., Turkovskaya, O. V. (2011). Izmenenie biologicheskoj aktivnosti zagryaznennoj uglevodorodami pochvy [The change of the biological activity of soil contaminated by hydrocarbons]. Povolzhskiy Journal of Ecology, 4, 482–488.
  23. Bartos, P., Balazs, M., Kiss, I., Bihari, Z., Kelemen, O., Mecs, I. (2007). Toxic effect of methyl tert-butyl ether on growth of soil isolate Pseudomonas veronii T1/1. World Journal of Microbiology and Biotechnology, 24 (6), 875–878. doi: 10.1007/s11274-007-9540-2
  24. Melnikov, D. A. (2005). Raspredelenie priznakov biodegradacii uglevodorodov i ocenka texnologicheski vazhnyx svojstv nefteokislyayushhix bakterij [Distribution signs of biodegradation of hydrocarbons and estimation of technologically important properties of oil-oxidizing bacteria]. Krasnodar, 25.
  25. Prince, R. C., Parkerton, T. F., Lee, C. (2007). The Primary Aerobic Biodegradation of Gasoline Hydrocarbons. Environmental Science & Technology, 41 (9), 3316–3321. doi: 10.1021/es062884d
  26. Kobzev, E. N., Petrikevich, S. B., Shkidchenko, A. N. (2001). Issledovanie ustojchivosti associacii mikroorganizmov – neftedestruktorov v otkrytoj sisteme [Investigation of the stability of microorganisms association – oil destructors in the open system]. Applied Biochemistry and Microbiology, 37 (4), 413–417.
  27. Shkidchenko, A. N., Arinbasarov, M. U. (2002). Izuchenie neftedestruktivnoj aktivnosti mikroflory pribrezhnoj zony Kaspijskogo morya [Studying of oil destructive activity of microflora of a coastal zone of the Caspian Sea]. Applied Biochemistry and Microbiology, 38 (5), 509–512.
  28. Gogoleva, O. A., Nemceva, N. V. (2012). Uglevodorodokislyayushhie mikroorganizmy prirodnyx ekosistem [Hydrocarbon oxidizing microorganisms of natural ecosystems]. Bulletin of the Orenburg scientific center UrO, Russian Academy of Sciences, 2.
  29. Mokeeva, A. V., Alekseev, A. Yu., Emelyanova, E. K., Zabelin, V. A., Zaushincena, A. V., Tarakanova, A. S., Shestopalov, A. M., Ilicheva, T. N. (2011). Associaciya shtammov bakterij-neftedestruktorov dlya remediacii neftezagryaznennyx territorij [Association strains of bacteria oil destructors for the remediation of oil-contaminated areas]. Bulletin of Novosibirsk State University. Series: Biology, clinical medicine, 9 (3), 27–34.
  30. Flathman, P. E., Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. Soil and Sediment Contamination, 7 (4), 415–432. doi: /10.1080/10588339891334438
  31. Schnoor, J. L. (2002). Phytoremediation of soil and groundwater; Technology Evaluation Report TE-02-01. Groundwater Remediation Technologies Analysis Centre (GWRTAC), 45.
  32. Schroder, P., Harvey, P. J., Schwitzguebel, J.-P. (2002). Prospects for the phytoremediation of organic pollutants in Europe. Environmental Science and Pollution Research, 9 (1), 1–3. doi: 10.1007/bf02987312
  33. Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z., Rathbone, K. (2003). Degradation of Crude Oil in the Rhizosphere ofSorghum bicolor. International Journal of Phytoremediation, 5 (3), 225–234. doi: 10.1080/713779222
  34. Cunningham, S. D., Anderson, T. A., Schwab, A. P., Hsu, F. C. (1996). Phytoremediation of Soils Contaminated with Organic Pollutants. Advances in Agronomy, 56, 55–114. doi: 10.1016/s0065-2113(08)60179-0
  35. Gerhardt, K. E., Huang, X.-D., Glick, B. R., Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176 (1), 20–30. doi: 10.1016/j.plantsci.2008.09.014
  36. Wang, J., Zhang, Z., Su, Y., He, W., He, F., Song, H. (2008). Phytoremediation of petroleum polluted soil. Petroleum Science, 5 (2), 167–171. doi: 10.1007/s12182-008-0026-0
  37. Dushenkov, S., Kapulnik, Y., Blaylock, M., Sorochisky, B., Raskin, I., Ensley, B. (1997). Phytoremediation: a novel approach to an old problem. Studies in Environmental Science, 66, 563–572. doi: 10.1016/s0166-1116(97)80071-4
  38. Dominguez-Rosado, E., Pichtel, J., Coughlin, M. (2004). Phytoremediation of Soil Contaminated with Used Motor Oil: I. Enhanced Microbial Activities from Laboratory and Growth Chamber Studies. Environmental Engineering Science, 21 (2), 157–168. doi: 10.1089/109287504773087336
  39. Dzhura, N., Romanyuk, O., Oshchapovsky, I. et. al. (2008). Using plants for recultivation of oil-polluted soils. J. Environmental protection and ecology, 9 (1), 55–59.
  40. Frick, C. M., Farrell, R. E., Germida, J. J. (1999). Assessment of phytoremediation as an in situ technique for cleaning oil-contaminated sites. PTAC Petroleum Technology Alliance, Canada, Calgary, 88.
  41. Telysheva, G., Jashina, L., Lebedeva, G., Dizhbite, T., Solodovnik, V., Mutere, O. et. al. (2011). Use of plants to remediate soil polluted with oil. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1, 38–45. doi: 10.17770/etr2011vol1.925
  42. Abdel Ghany, T. M., Al Abboud Mohamed, A., Negm Moustafa, E., Shater Abdel-Rahman, M. (2015). Rhizosphere microorganisms as inducers for phytoremediation a review. International Journal of Bioinformatics and Biomedical Engineering, 1 (1), 7–15.
  43. Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3 (2), 153–162. doi: 10.1016/s1369-5266(99)00054-0
  44. Chaillan, F., Le Fleche, A., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology, 155 (7), 587–595. doi: 10.1016/j.resmic.2004.04.006
  45. Phillips, L. A., Greer, C. W., Farrell, R. E., Germida, J. J. (2009). Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Applied Soil Ecology, 42 (1), 9–17. doi: 10.1016/j.apsoil.2009.01.002
  46. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., Lugtenberg, B. J. J. (2004). Rhizoremediation: A Beneficial Plant-Microbe Interaction. Molecular Plant-Microbe Interactions, 17 (1), 6–15. doi: 10.1094/mpmi.2004.17.1.6
  47. Susarla, S., Medina, V. F., McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18 (5), 647–658. doi: 10.1016/s0925-8574(02)00026-5
  48. Dakora, F. D., Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in lownutrient environments. Plant and Soil, 245 (1), 35–47. doi: 10.1023/a:1020809400075
  49. Aprill, W., Sims, R. C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20 (1-2), 253–265. doi: 10.1016/0045-6535(90)90100-8
  50. Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C., Broll, G. (2006). Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation, 8 (4), 273–284. doi: 10.1080/15226510600992808
  51. Kaimi, E., Mukaidani, T., Tamaki, M. (2007). Screening of Twelve Plant Species for Phytoremediation of Petroleum Hydrocarbon-Contaminated Soil. Plant Production Science, 10 (2), 211–218. doi: 10.1626/pps.10.211
  52. Korade, D. L., Fulekar, M. H. (2009). Effect of organic contaminants on seed germination of Lolium multiflorum in soil. Biology and Medicine, 1 (1), 28–34.
  53. Dzhura, N., Romanyuk, O., Honsyor, Ja., Tsvilynyuk, O., Terek, O. (2006). Vykorystannya roslyn dlya rekultyvatsiyi gruntiv zabrudnenykh naftoyu i naftoproduktamy [Using plants for restoration of the oil-cut soils]. Ecology and Noospherology, 17 (1-2), 55–60.
  54. Dzhura, N. M., Tsvilynyuk, O. M., Terek, O. I. (2007). Vplyv naftovoho zabrudnennya na vmist makro- ta mikroelementiv u roslynakh Carex hirta L. [Influence of soil pollution on macronutrient and micronutrient content in Carex hirta L. plants]. Ukrainian Botanical Journal, 64 (1), 122–131.
  55. Dzhura, N. M., Terek, O. I., Tsvilynyuk, O. M. (2005). Pat. No. 16345 UA. Method to purify oil-polluted soils. МPК А01В 79/00 А01В 79/02 А01С 21/00. No u4200511816; declareted: 12.12.2005; published: 15.08.2006, No. 8, 7.
  56. Dzhura, N. M. (2011). Perspektyvy fitoremediatsiyi naftozabrudnenykh gruntiv roslynamy Faba bona Medic (Vicia faba L.) [Prospects of oil polluted soils phytoremediation by Faba bona Medic. (Vicia faba L.) plants]. Visnyk of the Lviv University. Series Biology, 57, 117–124.
  57. Tsaytler, M. Y. (2001). Vidnovlennya roslynnoho pokryvu i zminy struktury tsenopopulyatsiy trav"yanykh roslyn na naftozabrudnenykh terytoriyakh Boryslavs'koho naftovoho rodovyshcha [Restoring vegetation and changes in the structure of herbal plant populations in areas of oil-contaminated of Borislav city]. Dnipropetrovsk, 16.
  58. Yateem, A., Balba, M. T., El‐Nawawy, A. S., Al‐Awadhi, N. (2000). Plants‐associated microflora and the remediation of oil‐contaminated soil. International Journal of Phytoremediation, 2 (3), 183–191. doi: 10.1080/15226510009359031
  59. Adam, G., Duncan, H. (2003). The effect of diesel fuel on common vetch (Vicia sativa L.) plants. Environ Geochem Health, 25 (1), 123–130.
  60. Frassinetti, S., Setti, L., Corti, A., Farrinelli, P., Montevecchi, P., Vallini, G. (1998). Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Canadian Journal of Microbiology, 44 (3), 289–297. doi: 10.1139/cjm-44-3-289
  61. Dzhura, N. M., Romaniuk, O. I., Tsvilynyuk, O. M., Terek, O. I. (2010). Pat. No. 60481 UA. Method for phytotreating oil-polluted soils. МPК А01В 79/02 В09С 1/00. No u201012943; declareted: 01.11.2010; published: 25.06.2011, No. 12, 4.
  62. Kyreeva, N. A., Tarasenko, E. M., Bakaeva, M. D. (2004). Detoksykatsyya neftezahryaznennуkh pochv pod posevamy lyutsernу (Medicago sativa L.) [Detoxification of oil-contaminated soils under crops of alfalfa (Medicago sativa L.)]. Agricultural Chemistry, 10, 68–72.
  63. Muratova, A. Yu., Turkovskaya, O. V., Khyubner, T., Kushk, P. (2003). Yspolzovanye lyutsernу y trostnyka dlya fytoremedyatsyy zahryaznennoho uhlevodorodamy hrunta [Using alfalfa and cane for the phytoremediation of contaminated soils by hydrocarbons]. Applied biochemistry and microbiology, 39 (6), 681–688.
  64. Stepanova, A. Yu., Orlova, E. V., Tereshonok, D. V., Dolhykh, Yu. Y. (2015). Poluchenye transhennуkh rastenyy lyutsernу posevnoy (Medicago sativa L.) dlya povуshenyya еffektyvnosty fytoremedyatsyy neftezahryaznennуkh pochv [Obtaining of transgenic alfalfa for improved phytoremediation the petroleum contaminated soils]. Ecological genetics, XIII (2), 127–135.
  65. Terek, O. I., Velychko, O. I., Dzhura, N. M. (2009). Fiziolohichni aspekty adaptatsiyi roslyn do naftozabrudnenoho gruntu [Physiological aspects of adaptation of plants to the oil polluted soil]. Plant Physiology: problems and prospects, 1, 217–225.
  66. Shaw, L. J., Burns, R. G. (2003). Biodegradation of organic pollutants in the rhizosphere. Advances in Applied Microbiology, 53, 1–60. doi: 10.1016/s0065-2164(03)53001-5
  67. Merkl, N., Schultze-Kraft, R., Infante, C. (2005). Assessment Of Tropical Grasses And Legumes For Phytoremediation Of Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 165 (1-4), 195–209. doi: 10.1007/s11270-005-4979-y
  68. Gramss, G., Voigt, K.-D., Kirsche, B. (1999). Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere, 38 (7), 1481–1494. doi: 10.1016/s0045-6535(98)00369-5
  69. Velychko, O. (2012). Efektyvnist funktsionuvannya symbiotychnoyi systemy Bradyrhizobium japonicum – roslyny soyi u naftozabrudnenomu gruntiv [Effectiveness of symbiotic system Bradyrhizobium japonicum –soy plants in the oil polluted soil]. Visnyk of the Lviv University. Series Biology, 58, 150–157.
  70. Njoku, K. L., Akinola, M. O., Oboh, B. O. (2008). Growth and performance of Glycine max L. (Merrill) in crude oil contaminated soil augmented with cow dung. Nat. Sci., 6 (1), 48–58.
  71. Kyreeva, N. A., Hryhoryady, A. S., Vodopyanov, V. V., Amyrova, A. R. (2011). Podbor rastenyy dlya fytoremedyatsyy pochv, zahryaznennуkh neftyanуmy uhlevodorodamy [Selection of plants for phytoremediation of soil contaminated by petroleum hydrocarbons]. Proceedings of Samara Scientific Center RAS, 13 (5 (2)), 184–187.
  72. Arkhypchenko, Y. A., Zahvozdkyn, V. K., Ertsev, H. N. (2004). Ochystka neftezahryaznennуkh pochv s pomoshch'yu byopreparatov na osnove mykrobnуkh udobrenyy [Cleaning of the oil polluted soils by means of biological products on the basis of microbic fertilizers]. Ecology and industry of Russia, 9, 16–18.
  73. Nazarov, A. V. (2013). Yspolzovanye mykrobno-rastytelnуkh assotsyatsyy dlya ochystky pochvу ot neftyanoho zahryaznenyya [Use of microbial-plant associations for bioremediation of oil contaminated soil]. Proceedings of the Samara Scientific Center RAS, 15 (3 (5)), 1673–1676.
  74. Salakhova, H. M. (2007). Zminy ekoloho-fiziolohichnykh parametriv roslyn i ryzosfernoy mikrobioty v umovakh naftovoho zabrudnennya ta rekul'tyvatsiyi gruntiv [Changes of ekologo-physiological parameters of plants and rhizosphere microbiota in the conditions of oil pollution and soil remediation]. Ufa, 23.
  75. Muratova, A. Yu., Bondarenkova, A. D., Panchenko, L. V., Turkovskaya, O. V. (2010). Yspolzovanye kompleksnoy fytoremedyatsyy dlya ochystky pochvу, zahryaznennoy nefteshlamom [Use of a complex phytoremediation to clean soil contaminated by oil sludge]. Biotechnology, 1, 77–84.
  76. Pivetz, B. E. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA Ground Water Issue, EPA/540/S-01/500. Ada, Ok, 36.
  77. Siciliano, S. D., Germida, J. J. (1998). Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 30 (13), 1717–1723. doi: 10.1016/s0038-0717(98)00021-2
  78. Lopez-Martinez, S., Gallegos-Martinez, M. E., Perez-Flores, L. J., Gutierrez-Rojas, M. (2008). Contaminated Soil Phytoremediation byCyperus LaxusLam. Cytochrome P450 Erod-Activity Induced by Hydrocarbonsin Roots. International Journal of Phytoremediation, 10 (4), 289–301. doi: 10.1080/15226510802096069
  79. Mironova, N. H. (2015). Fitomelioratsiya tekhnohennykh vodoym Maloho Polissya [Phytomelioration in technogenic reservoirs of Male Polissya]. Lviv, 40.
  80. Lebedeva, N. A. (1984). Vozmozhnost rekultyvatsyy otvalov Kumertauskoho uholnoho razreza bez nanesenyya pochvennoho sloya [Possibility of recultivation of dumps of the Kumertau coal mine without drawing a soil layer]. Plants and industrial environment, 78–84.
  81. Alyev, Y. N. (2012). Estestvennoe oblesenye y byolohycheskaya rekultyvatsyya narushennуkh zemel severnoho Kavkaza (na prymere Kabardyno-Balkaryy) [Natural afforestation and biological reclamation of disturbed lands of the North Caucasus (on the example of Kabardino-Balkaria)]. Volgograd, 42.
  82. Treshchevskyy, Y. V. (2010). Pochvouluchshayushchaya rol' zashchytnуkh nasazhdenyy na rekul'tyvyrovannуkh zemlyakh Lebedynskoho HOKa Kurskoy mahnytnoy anomalyy [Soil-improving role of protective plantings on the reclaimed land of Lebedinsky GOK of the Kursk magnetic anomaly]. Kursk, 22.
  83. Zverkovskyy, V. M. (1997). Fitomelioratsiya shakhtnykh vidvaliv v Zakhidnomu Donbasi [Phytomelioration of mine dumps in the Western Donbass]. Ukrainian Botanical Journal, 54 (5), 474–481.
  84. Kondratyuk, E. N. (1985). Yssledovanyya y praktyka rekul'tyvatsyy narushennуkh zemel' v Donbasse [Researches and practice of land reclamation in Donbass]. Introduction and acclimatization of plants, 3, 3–6.
  85. Mazur, A. E., Smetana, N. H. (1996). Struktura y rekul'tyvatsyya landshaftov Kryvorozhya [Structure and recultivation of landscapes of Krivorozhya]. Biological land reclamation. Ekaterinburg: UrO RAN, 14–16.
  86. Blynova, Z. P. (2014). Byotestyrovanye pochvennoho pokrova horodskykh terrytoryy s yspol'zovanyem prorostkov Raphanus sativus [Soil bioassay in urban areas using seedlings Raphanus sativus]. Bulletin of MSRU «Natural sciences», 1, 18–23.
  87. Maksymenko, O. E., Chervyakov, N. A., Karkyshko, T. Y., Hlotov, N. V. (1997). Dynamyka vosstanovlenyya rastytelnosty antropohenno narushennoho sfahnovoho bolota na terrytoryy neftepromуsla v Srednem Pryobe [Dynamics of vegetation restoration of anthropogenically disturbed sphagnum bogs in the territory of the oil field in the Middle Pryobye]. Ecology, 4, 243–247.
  88. Cook, R. L., Landmeyer, J. E., Atkinson, B., Messier, J.-P., Nichols, E. G. (2010). Field Note: Successful Establishment of a Phytoremediation System at a Petroleum Hydrocarbon Contaminated Shallow Aquifer: Trends, Trials, and Tribulations. International Journal of Phytoremediation, 12 (7), 716–732. doi: 10.1080/15226510903390395
  89. Kamath, R., Rentz, J. A., Schnoor, J. L., P. Alvarez, J. J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in Surface Science and Catalysis, 151, 447–478. doi: 10.1016/s0167-2991(04)80157-5
  90. Wyszkowska, J., Kucharski, J. (2001). Correlation between number of microbes and degree of soil contamination by petrol. Polish Journal of Environmental Studies, 10 (3), 175–181.
  91. Rehan, M., Swanson, E., Tisa, L. S. (2016). Frankia as a Biodegrading Agent. Chap. 11. Actinobacteria – Basics and Biotechnological Applications, 271–290. doi: 10.5772/61825
  92. Shevchik, L., Romaniuk, O. (2016). The optimal way of biological cleaning of oil-contaminated soils. Mediterranean Journal of Biosciences, 1 (3), 109–113.
  93. Romaniuk, O. I., Shevchyk, L. Z., Terek, O. I. (2013). Pat. No. 86572UA. Method of cleaning of technogenic soils, contaminated with oil. МPК А01В 79/00-79/02 В09С 1/00. No. u201305665; declareted: d 30.04.2013; published: 10.01.2014, No. 1.
  94. Romanyuk, O. et. al. (2009). Provedennya ekolohichnoho monitorynhu pidzemnykh vod, zahazovanosti ta zabrudnennya hruntiv na terytoriyi m. Boryslava [Conduct environmental monitoring of groundwater, gas contamination of air and pollution of soils in the city Borislav]. Lviv: Department of Physical Chemistry of Fossil Fuels InPOCC NAS of Ukraine, 33.
  95. Shevchyk, L., Romaniuk, O. (2013). Developing technology of remediation of oil-contaminated soils. Chemistry and Chemical Technology: Proceedings of the 3rd International Conference of Young Scientists CCT-2013. Lviv: Lviv Polytechnic Publishing House, 74–75.
  96. Shevchyk, L. Z., Romaniuk, O. I. (2015). Otsinka stanu pylku ta pihmentiv u lystkakh roslyn oblipykhy krushynovydnoyi, vyroshchenoyi v umovakh naftovoho zabrudnennya [Assessment of pollen and pigments in leaves of a sea-buckthorn plants, grown up in the conditions of oil pollution]. State of biodiversity and ecosystems Shatsk National Park. Lviv, 114–115.
  97. Romaniuk, O. I., Shevchyk, L. Z. (2013). Perspektyvy vykorystannya oblipykhy krushynovydnoyi dlya fitoremediatsiyi naftozabrudnenykh hruntiv [The prospects of use of sea-buckthorn plants for phytoremediation of oil-contaminated soils]. State of biodiversity and ecosystems Shatsk National Park. Lviv, 67–68.
  98. Romanyuk, O. et. al. (2008). Monitorynh dovkillya v zoni ozokerytovoho rudnyka [Environmental monitoring in the area of ozokerite of mine]. Lviv: Department of Physical Chemistry of Fossil Fuels InPOCC NAS of Ukraine, 32.
  99. Shuvalov, Yu. V., Sinkova, E. A., Kuzmin, D. N. (2004). Ochistka gruntov ot zagryazneniya neftyu i nefteproduktami [Clean soil from oil and oil products]. Mining informational and analytical bulletin, 12, 107–117.
  100. Zagvozdkin, V. K. (2007). Informacionnaya podderzhka upravleniya likvidaciej posledstvij avarijnyx razlivov nefti i nefteproduktov [Information support management liquidation of consequences of emergency oil spills]. Moscow, 20.
  101. Romanyuk, O. et. al. (2016). Rozrobka naukovykh osnov kompleksnoho ekolohichnoho monitorynhu ta metodolohiyi vidnovlennya tekhnohenno zminenoho dovkillya [Development of scientific bases of complex environmental monitoring and methodology of restoration of technologically changed environment]. Lviv: Department of Physical Chemistry of Fossil Fuels InPOCC NAS of Ukraine, 202.

Published

2017-02-28

How to Cite

Shevchyk, L., & Romaniuk, O. (2017). The analysis of biological ways of restoration of the oil-contaminated soils. ScienceRise: Biological Science, (1 (4), 31–39. https://doi.org/10.15587/2519-8025.2017.94052

Issue

Section

Biological Sciences