Prognostic assessment of cryosensitivity level for umbilical cord blood hemopoietic tissue with the help of markers of prooxidant activity processes

Authors

  • Tetiana Kalynychenko State Institution "Institute of Hematology and Transfusiology of the National Academy of Medical Sciences of Ukraine" Maksyma Berlynskoho str., 12, Kiyv, Ukraine, 04060, Ukraine https://orcid.org/0000-0002-4905-3256

DOI:

https://doi.org/10.15587/2519-4798.2018.138222

Keywords:

umbilical cord blood hemopoietic tissue, cryosensitivity, lipid peroxidation, granulocyte-macrophage hemopoietic progenitor cells, low-temperature cord blood banks

Abstract

Aim. To investigate the connection between the levels of human umbilical cord blood hemopoietic tissue (UCB HT) cryosensitivity (using of the granulocyte-macrophage progenitors (GMPs) percentage loss) and activity of prooxidant processes in whole blood before the beginning of its cryopreservation.

Methods of research. Cryopreservation of UCB nuclear cell fraction was carried out by slow freezing under protection of the dimethyl sulfoxide in 5% final concentration (v/v). The loss of GMPs was determined by the difference in the total content of colonies and clusters prior to cryopreservation and after thawing the sample in a short-term tissue culture. The activity of prooxidant processes in UCB was studied by biochemical markers of lipid peroxidation products (LPO) using a spectrophotometric method for determining the concentrations of such products as substrates for lipid peroxidation (isolated double bonds - IDB), intermediate (conjugated dienes (CD), conjugated trienes (CT), conjugated oxodienes (COD)) and final LPO products such as Schiff bases (ShB) for neutral lipids and phospholipids. Data analysis performed on models of analytical groups, regression analysis, mutual conjugation.

Results. It has been demonstrated that the level of UCB HT cryosensitivity (due to loss of GMPs) has direct correlation with LPO activity indices (from medium to high significance level). The relative risk (RR) of loss of GMPs is significantly increased under the condition of high levels of LPO phospholipid peroxidation in UCB before beginning cryopreservation. In particular, in the case of phospholipid peroxidation, it is: for IDB - RR = 5.29; 95% CI: 2.69-10.38; p <0.001; CD - RR = 5.73; 95% CI: 2.88-11.40; p <0.001; CT and COD - RR = 2.81; 95% CI: 1.72-4.60; p <0.001; ShB - RR = 1, 92, 95% CI: 1.16-3.18, p <0.01, respectively.

Conclusions. Evaluation of the activity level of prooxidant processes in UCB using the biochemical markers before the start of the freezing procedure is valuable because of the possibility of creating an early prediction of the HT cryosensitivity, which can be useful in choosing cryopreservation tactics

Author Biography

Tetiana Kalynychenko, State Institution "Institute of Hematology and Transfusiology of the National Academy of Medical Sciences of Ukraine" Maksyma Berlynskoho str., 12, Kiyv, Ukraine, 04060

PhD, Senior Researcher, Head of Laboratory

Laboratory of Hemopoietic Cell Cryopreservation

References

  1. Passweg, J. R., Baldomero, H., Bader, P., Bonini, C., Cesaro, S., Dreger, P. et. al. (2016). Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplantation, 51 (6), 786–792. doi: http://doi.org/10.1038/bmt.2016.20
  2. Copelan, E. A. (2006). Hematopoietic Stem-Cell Transplantation. New England Journal of Medicine, 354 (17), 1813–1826. doi: http://doi.org/10.1056/nejmra052638
  3. Gratwohl, A., Pasquini, M. C., Aljurf, M., Atsuta, Y., Baldomero, H., Foeken, L. et. al. (2015). One million haemopoietic stem-cell transplants: a retrospective observational study. The Lancet Haematology, 2 (3), e91–e100. doi: http://dx.doi.org/10.1016/s2352-3026(15)00028-9.
  4. Niederwieser, D., Baldomero, H., Szer, J., Gratwohl, M., Aljurf, M., Atsutaet, Y. et. al. (2016). Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplantation, 51 (6), 778–785. doi: http://doi.org/10.1038/bmt.2016.18
  5. Kalynychenko, T. O. (2017). Umbilical cord blood banking in the worldwide hematopoietic stem cell transplantation system: perspectives for Ukraine. Experimental Oncology, 39 (3), 164–170. Available at: http://exp-oncology.com.ua/wp/wp-content/uploads/2017/09/2394.pdf?upload=PMID:28967644
  6. Ballen, K. K., Gluckman, E., Broxmeyer, H. E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood, 122 (4), 491–498. doi: http://doi.org/10.1182/blood-2013-02-453175
  7. Van den Broek, B. T. A., Page, K., Paviglianiti, A., Hol, J., Allewelt, H., Volt, F. et. al. (2018). Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Advances, 2 (1), 49–60. doi: http://doi.org/10.1182/bloodadvances.2017010645
  8. Rao, M., Ahrlund-Richter, L., Kaufman, D. S. (2011). Concise Review: Cord Blood Banking, Transplantation and Induced Pluripotent Stem Cell: Success and Opportunities. Stem Cells, 30 (1), 55–60. doi: http://doi.org/10.1002/stem.770
  9. Ballen, K. (2017). Update on umbilical cord blood transplantation. F1000Research, 6, 1556. doi: http://doi.org/10.12688/f1000research.11952.1
  10. Spellman, S., Hurley, C. K., Brady, C., Phillips-Johnson, L., Chow, R., Laughlin, M. et. al. (2011). Guidelines for the development and validation of new potency assays for the evaluation of umbilical cord blood. Cytotherapy, 13 (7), 848–855. doi: http://doi.org/10.3109/14653249.2011.571249
  11. Barker, J. N., Scaradavou, A., Stevens, C. E. (2009). Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood, 115 (9), 1843–1849. doi: http://doi.org/10.1182/blood-2009-07-231068
  12. Powell, K., Kwee, E., Nutter, B., Herderick, E., Paul, P., Thut, D. et. al. (2016). Variability in subjective review of umbilical cord blood colony forming unit assay. Cytometry Part B: Clinical Cytometry, 90 (6), 517–524. doi: http://doi.org/10.1002/cyto.b.21376
  13. Patterson, J., Moore, C. H., Palser, E., Hearn, J. C., Dumitru, D., Harper, H. A. et. al. (2015). Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units. Journal of Translational Medicine, 13 (1). doi: http://doi.org/10.1186/s12967-015-0434-z
  14. Page, K. M., Zhang, L., Mendizabal, A., Wease, S., Carter, S., Gentry, T. et. al. (2011). Total Colony-Forming Units Are a Strong, Independent Predictor of Neutrophil and Platelet Engraftment after Unrelated Umbilical Cord Blood Transplantation: A Single-Center Analysis of 435 Cord Blood Transplants. Biology of Blood and Marrow Transplantation, 17 (9), 1362–1374. doi: http://doi.org/10.1016/j.bbmt.2011.01.011
  15. Fifth edition NetCord-FACT international standards for cord blood collection, banking, and release for administration (2013). Available at: https://www.factweb.org/forms/store/ProductFormPublic/fifth-edition-netcord-fact-international-standards-for-cord-blood-collection-banking-and-release-for-administration-print-version
  16. Pamphilon, D., Selogie, E., McKenna, D., Cancelas-Peres, J. A., Szczepiorkowski, Z. M., Sacher, R. et. al. (2013). Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy, 15 (3), 255–262. doi: http://doi.org/10.1016/j.jcyt.2012.11.013
  17. Moroff, G., Eichler, H., Brand, A., Kekomaki, R., Kurtz, J. Letowska, M. et. al. (2006). Multiple-laboratory comparison of in vitro assays utilized to characterize hematopoietic cells in cord blood. Transfusion, 46 (4), 507–515. doi: http://doi.org/10.1111/j.1537-2995.2006.00758.x
  18. Rich, I. N. (2015). Improving Quality and Potency Testing for Umbilical Cord Blood: A New Perspective. STEM CELLS Translational Medicine, 4 (9), 967–973. doi: http://doi.org/10.5966/sctm.2015-0036
  19. Page, K. M., Zhang, L., Mendizabal, A., Wease, S., Carter, S., Shoulars, K. et. al. (2011). The Cord Blood Apgar: a novel scoring system to optimize selection of banked cord blood grafts for transplantation (CME). Transfusion, 52 (2), 272–283. doi: http://doi.org/10.1111/j.1537-2995.2011.03278.x
  20. Kalynychenko, T. O., Anoshyna, M. Yu., Balan, V. V., Minchenko, Zh. N., Glukhen’ka, G. T. (2012). Oxidizing homeostasis and umbilical cord blood hematopoietic tissues safe keeping during the transplantation material cryopreservation stages. Collection of Scientific Works of Staff Members of NMAPE, 21 (3), 111–116.
  21. Vladimirov, Yu. А. (2000). Biological membranes and non-programmed cell death. Soros Educational Journal. Biology, 6 (9), 2–9. Available at: http://window.edu.ru/resource/554/20554/files/0009_002.pdf
  22. Kalynychenko, T., Anoshyna, M., Pavliuk, R., Balan, V. (2017) Research of cord blood cell cryosensitivity: communication with distinct blood group antigenic determinants. ScienceRise, 12 (1), 14–20. doi: 10.15587/2313-8416.2017.118384
  23. Perechrestenko, P. M., Kalynychenko, T. O., Glukhen’ka, G. T., Gashchuk, G. P., Pavlyuk, R. P., Nastenko, O. P. et. al. (2009). Quality control system of cryopreserved nuclear cord blood cells for allogeneic application. Kyiv, 21.
  24. Kalynychenko, Т. O., Anoshyna, M. Yu., Balan, V. V. (2017). Advantages of umbilical cord blood cryopreservation using an unit volume reduction optimized method. Hematology. Transfusiology. Eastern Europe, 3 (4), 734–743.
  25. Balashova, V. A.; Abdulkadyrov, K. M. (Ed.) (2004). Ch. 6.Cell cultures. Hematology: The newest reference book. Moscow: Izd-voEHksmo; Saint Petersburg: Izd-voSova, 928.
  26. Volchegorsky, I. A., Nalimov, A. G., Yarovinsky, B. G., Lifshitz, R. I. (1989). Comparison of different approaches to the definition of LPO products in heptane – isopropanol blood extracts. Questions of Medical Chemistry, 35 (1), 127–131.
  27. Anoshyna, M. Yu., Kalynychenko, T. O., Glukhen’ka, G. T. (2011). The estimation of lipid’s peroxidation in cryopreserved patterns of umbilical cord blood. Ukrainian Journal Hematology and Transfusiology, 11 (3), 12–15.
  28. Petrie, A., Sabin, C.; Leonova, V. P. (Ed.) (2015). Medical statistics at a glance. Moscow: GEHOTAR-Media, 216.
  29. Migliaccio, A. R., Adamson, J. W., Stevens, C. E., Dobrila, N. L., Carrier, C. M., Rubinstein, P. (2000). Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood, 96 (8), 2717–2722.
  30. Vatansever, B., Demirel, G., Ciler Eren, E., Erel, O., Neselioglu, S., Karavar, H. N. et. al. (2017). Is early cord clamping, delayed cord clamping or cord milking best? The Journal of Maternal-Fetal & Neonatal Medicine, 31 (7), 877–880. doi: http://doi.org/10.1080/14767058.2017.1300647
  31. Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70 (5), 257–265. doi: http://doi.org/10.1111/j.1753-4887.2012.00476.x
  32. Kalynychenko, T. O., Anoshyna, M. Yu., Shorop, E. V., Minchenko, Zh. N., Balan, V. V. (2017). Simplified method for cryopreservation of umbilical cord blood hematopoietic tissue. Collection of Scientific Works of Staff Members of NMAPE, 27, 253–262.

Published

2018-07-19

How to Cite

Kalynychenko, T. (2018). Prognostic assessment of cryosensitivity level for umbilical cord blood hemopoietic tissue with the help of markers of prooxidant activity processes. ScienceRise: Medical Science, (5 (25), 52–58. https://doi.org/10.15587/2519-4798.2018.138222

Issue

Section

Medical Science