Application of dendritic cell based vaccination in adjuvant treatment of patients with pancreatic cancer

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.94302

Keywords:

pancreatic cancer, anti-tumor vaccine, dendric cells, survival, immune system

Abstract

Pancreatic cancer (PC) is included in the seven most widespread cancers and is the most aggressive of all gastrointestinal cancers. Unfortunately, all known modalities in PC treatment do not provide the desired result. Anti-tumor vaccinotherapy (ATV) seems to be promising. It causes a specific immune response (IR) directed to the tumor-associated antigens (TAA), included into the vaccine. The original construction based on dendric cells (DC) was offered as ATV: mechano-activated lyophilized tumor cells (MALTC), which was used with adjuvant chemotherapy simultaneously.

The aim of our research was to study the influence of DC- MALTC-ATV in adjuvant treatment composition on general survival of PC patients.

Materials and methods. After radical surgery, the patients were randomly divided in two groups: basic group (22 patients), which received DC-vaccine in addition to adjuvant chemotherapy (Gemcitabine+Tegafur), and control group (21 patient), which received only chemotherapy. The general survival rate was calculated using Kaplan–Meier estimator, comparison of survival rates between groups was carried out by Logrank test.

Results. The overall survival median is 36 and 11 months for basic and control groups, respectively. By the moment of statistical analysis on the 35th month of observation, 29 % of patients from the control group survived compared to 50 % of the basic group patients.

Conclusion. Therefore, the use of DC- MALTC-ATV in complex with adjuvant chemotherapy significantly improves general survival rates in PC patients (р=0,02)

Author Biographies

Oleksii Dronov, Bohomolets National Medical University Tarasa Shevchenka blvd., 13, Kyiv, Ukraine, 01601

MD, professor

Department of General Surgery No. 1

Sergiі Zemskov, Bohomolets National Medical University Tarasa Shevchenka blvd., 13, Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of General Surgery No. 1

Natalia Khranovska, National cancer institute 33/43 Lomonosova str., Kyiv, Ukraine, 03022

PhD, Senior Researcher

Laboratory of Experimental Oncology

Oksana Skachkova, National cancer institute 33/43 Lomonosova str., Kyiv, Ukraine, 03022

PhD

Laboratory of Experimental Oncology

References

  1. Aerts, J. G., Lievense, L. A., Hoogsteden, H. C., Hegmans, J. P. (2014). Immunotherapy prospects in the treatment of lung cancer and mesothelioma. Transl. Lung Cancer Res., 3 (1), 34–45.
  2. Tartour, E., Zitvogel, L. (2013). Lung cancer: potential targets for immunotherapy. The Lancet Respiratory Medicine, 1 (7), 551–563. doi: 10.1016/s2213-2600(13)70159-0
  3. Anagnostou, V. K., Brahmer, J. R. (2015). Cancer Immunotherapy: A Future Paradigm Shift in the Treatment of Non-Small Cell Lung Cancer. Clinical Cancer Research, 21 (5), 976–984. doi: 10.1158/1078-0432.ccr-14-1187
  4. Kenter, G. G., Welters, M. J. P., Valentijn, A. R. P. M., Lowik, M. J. G., Berends-van der Meer, D. M. A., Vloon, A. P. G. et. al. (2009). Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia. New England Journal of Medicine, 361 (19), 1838–1847. doi: 10.1056/nejmoa0810097
  5. Slingluff, C. L., Lee, S., Zhao, F., Chianese-Bullock, K. A., Olson, W. C., Butterfield, L. H. et. al. (2013). A Randomized Phase II Trial of Multiepitope Vaccination with Melanoma Peptides for Cytotoxic T Cells and Helper T Cells for Patients with Metastatic Melanoma (E1602). Clinical Cancer Research, 19 (15), 4228–4238. doi: 10.1158/1078-0432.ccr-13-0002
  6. Nemunaitis, J., Dillman, R. O., Schwarzenberger, P. O., Senzer, N., Cunningham, C., Cutler, J. et. al. (2006). Phase II Study of Belagenpumatucel-L, a Transforming Growth Factor Beta-2 Antisense Gene-Modified Allogeneic Tumor Cell Vaccine in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 24 (29), 4721–4730. doi: 10.1200/jco.2005.05.5335
  7. Palucka, K., Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12 (4), 265–277. doi: 10.1038/nrc3258
  8. Hegmans, J. P., Veltman, J. D., Lambers, M. E., de Vries, I. J. M., Figdor, C. G., Hendriks, R. W. et. al. (2010). Consolidative Dendritic Cell-based Immunotherapy Elicits Cytotoxicity against Malignant Mesothelioma. American Journal of Respiratory and Critical Care Medicine, 181 (12), 1383–1390. doi: 10.1164/rccm.200909-1465oc
  9. Giaccone, G., Bazhenova, L. A., Nemunaitis, J., Tan, M., Juhasz, E., Ramlau, R. et. al. (2015). A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. European Journal of Cancer, 51 (16), 2321–2329. doi: 10.1016/j.ejca.2015.07.035
  10. Butts, C., Socinski, M. A., Mitchell, P. L., Thatcher, N., Havel, L., Krzakowski, M. et. al. (2014). Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. The Lancet Oncology, 15 (1), 59–68. doi: 10.1016/s1470-2045(13)70510-2
  11. Wang, M., Cao, J.-X., Liu, Y.-S., Xu, B.-L., Li, D., Zhang, X.-Y. et. al. (2015). Evaluation of tumour vaccine immunotherapy for the treatment of advanced non-small cell lung cancer: a systematic meta-analysis. BMJ Open, 5 (4), e006321–e006321. doi: 10.1136/bmjopen-2014-006321
  12. Dammeijer, F., Lievense, L. A., Veerman, G. D. M., Hoogsteden, H. C., Hegmans, J. P., Arends, L. R., Aerts, J. G. (2016). Efficacy of Tumor Vaccines and Cellular Immunotherapies in Non–Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Journal of Clinical Oncology, 34 (26), 3204–3212. doi: 10.1200/jco.2015.66.3955
  13. Khranovska, N., Skachkova, O., Ganul, A. et. al. (2013). Results from phase III trial of dendritic cell based vaccine immunotherapy in patients with IIB-IIIA stage non-small-cell lung cancer. Lung cancer. J Thorac. Oncol. Australia, 15, 689.
  14. Orel, V. Je., Grinevich, Ju. A., Dzjatkovskaja, N. N. et. al.; Ju. A. Grinevicha (Ed.) (2008). Bioinzhenernaja tehnologija poluchenija opuholespecificheskogo antigena na osnove mehanohimicheski radiacionno-geterogenizirovannyh opuholevyh kletok. Specyfichna imunoterapija v onkologii'. Kyiv: Zdorov'e, 31–38.
  15. Hranovskaja, N. N., Skachkova, O. V., Zemskov, S. V. (2017). Phenotypic features of generated dendritic cells in patients with pancreatic cancer immunotherapy. ScieneRise: Medical Science, 1 (9), 10–14. doi: 10.15587/2519-4798.2017.90950
  16. Takahashi, K., Toyokawa, H., Takai, S., Satoi, S., Yanagimoto, H., Terakawa, N. et. al. (2005). Surgical influence of pancreatectomy on the function and count of circulating dendritic cells in patients with pancreatic cancer. Cancer Immunology, Immunotherapy, 55 (7), 775–784. doi: 10.1007/s00262-005-0079-5
  17. Plate, J. M. D., Plate, A. E., Shott, S., Bograd, S., Harris, J. E. (2005). Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunology, Immunotherapy, 54 (9), 915–925. doi: 10.1007/s00262-004-0638-1
  18. Bauer, C., Sterzik, A., Bauernfeind, F., Duewell, P., Conrad, C., Kiefl, R. et. al. (2014). Concomitant gemcitabine therapy negatively affects DC vaccine-induced CD8+ T-cell and B-cell responses but improves clinical efficacy in a murine pancreatic carcinoma model. Cancer Immunology, Immunotherapy, 63 (4), 321–333. doi: 10.1007/s00262-013-1510-y
  19. Ghansah, T., Vohra, N., Kinney, K., Weber, A., Kodumudi, K., Springett, G. et. al. (2013). Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma. Cancer Immunology, Immunotherapy, 62 (6), 1083–1091. doi: 10.1007/s00262-013-1407-9
  20. Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A. et. al. (2010). 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity. Cancer Research, 70 (8), 3052–3061. doi: 10.1158/0008-5472.can-09-3690
  21. Ciliberto, D., Botta, C., Correale, P., Rossi, M., Caraglia, M., Tassone, P., Tagliaferri, P. (2013). Role of gemcitabine-based combination therapy in the management of advanced pancreatic cancer: A meta-analysis of randomised trials. European Journal of Cancer, 49 (3), 593–603. doi: 10.1016/j.ejca.2012.08.019
  22. Murakami, Y., Uemura, K., Sudo, T., Hayashidani, Y., Hashimoto, Y., Nakagawa, N. et. al. (2008). Adjuvant gemcitabine plus S-1 chemotherapy after surgical resection for pancreatic adenocarcinoma. The American Journal of Surgery, 195 (6), 757–762. doi: 10.1016/j.amjsurg.2007.04.018
  23. Kondo, N., Murakami, Y., Uemura, K., Sudo, T., Hashimoto, Y., Nakashima, A., Sueda, T. (2011). Combined Analysis of Dihydropyrimidine Dehydrogenase and Human Equilibrative Nucleoside Transporter 1 Expression Predicts Survival of Pancreatic Carcinoma Patients Treated with Adjuvant Gemcitabine Plus S-1 Chemotherapy after Surgical Resection. Annals of Surgical Oncology, 19 (S3), 646–655. doi: 10.1245/s10434-011-2140-2
  24. Menges, P., Kessler, W., Kloecker, C., Feuerherd, M., Gaubert, S., Diedrich, S. et. al. (2012). Surgical Trauma and Postoperative Immune Dysfunction. European Surgical Research, 48 (4), 180–186. doi: 10.1159/000338196
  25. Dronov, A. I., Zemskov, S. V., Krjuchina, E. A. (2016). Vypolnenie total'noj pankreatjektomii po povodu zlokachestvennyh novoobrazovanij podzheludochnoj zhelezy. Klin. Hirurgija, 10, 26–30.

Published

2017-02-28

How to Cite

Dronov, O., Zemskov, S., Khranovska, N., & Skachkova, O. (2017). Application of dendritic cell based vaccination in adjuvant treatment of patients with pancreatic cancer. ScienceRise: Medical Science, (2 (10), 31–36. https://doi.org/10.15587/2519-4798.2017.94302

Issue

Section

Medical Science