Research of N,N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides as additives for increasing the load carryng capacity of syntetic oil based on the pentaerythritol esther and butyric acid

Authors

  • Olexandr Pavliuk V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094, Ukraine https://orcid.org/0000-0002-0857-4979
  • Volodymyr Sukhoveev Nizhyn Mykola Gogol State University, 2, Grafska str., Nizhyn, Chernihiv region, Ukraine, 16600 V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094, Ukraine https://orcid.org/0000-0002-1590-1675
  • Volodymyr Pyliavskyi V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094, Ukraine https://orcid.org/0000-0001-7422-0311
  • Volodymyr Kashkovsky V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094, Ukraine https://orcid.org/0000-0001-8413-7132

DOI:

https://doi.org/10.15587/2312-8372.2019.180178

Keywords:

N, N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides, synthetic oil, relative viscosity, refractive index, wear spot, load bearing capacity

Abstract

The object of research is N,N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides (Ar: C6H5 (1); C6H4–4–CH3 (2); C6H4–4–OC2H5 (3)) as antiwear additives to oils that are derived from the corresponding sulfonyl chloride and dialylamine. The industrial additive DF-11 (zinc dialkyldithiophosphate) (4) was used as a reference in action, and the 2-mercaptobenzthiazole allyl ether was used as a structural standard (5). As a synthetic oil, pentaerythritol and n-butyric acid ester, which is obtained by the esterification reaction, is used.

Some physical characteristics (relative viscosity and refractive index) of the obtained oil were studied with and without the addition of sulfonylamides (1)–(3).

The effect of the addition of N, N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides (Ar: C6H5 (1); C6H4–4–CH3 (2); C6H4–4–OC2H5 (3)) on the dynamic strength of the test oil was evaluated by ASTM D2783 (GOST 9490-75) on the four ball friction machine in terms of critical load. The tests were carried out by friction in the corresponding liquids of standardized metal balls made of ShKh 15 steel (microhardness – 64–66 HRC, stiffness parameter – Ra<0.25 μm). The rotation frequency of the upper loaded balls in relation to three stationary balls is 1500 × 1, the oil temperature is 20 °C. The test time at each load is 10 s, the experiment repeatability is three tests for each load.

The study of changes in the diameter of the wear spot Dw of metal balls during friction in the initial oil without adding compound (3) and in accordance with the addition was carried out at revolutions of 1500 rpm, an initial temperature of 25 °C, a load of 98 N, and a study time of 1:00. The results obtained indicate that Dw of the oil without making the specified compound was 0.75 mm, and when it was added (0.1 wt. %) – 0.67 mm, that is, the reduction in wear is 10.67 %.

It is found that the presence of the studied additives (1)–(3) in low concentrations in a synthetic oil based on pentaerythritol and n-butyric acid can significantly increase its bearing capacity. The most effective compound (3), which at a concentration of 0.1 % of the mass exceeds the bearing capacity in comparison with (4) by 1.38 times, and with (5) – by 1.37 times. The specified compound is more effective in concentration, 1020 times less in comparison with known additives.

Thus, the use of N,N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides as additives to increase the bearing capacity of synthetic oils based on pentaerythritol and synthetic fatty acids, allows to increase the antiwear activity of lubricants. Therefore, they can be used to create new effective compositions for oils and petroleum products.

Author Biographies

Olexandr Pavliuk, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094

Engineer

Department of Organic and Petrochemical Synthesis

Volodymyr Sukhoveev, Nizhyn Mykola Gogol State University, 2, Grafska str., Nizhyn, Chernihiv region, Ukraine, 16600 V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094

Doctor of Chemical Sciences, Leading Researcher, Head of Department

Department of Chemistry

Volodymyr Pyliavskyi, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094

Senior Researcher

Department of Homogeneous Catalysis and Petroleum Additives

Volodymyr Kashkovsky, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1, Murmanska str,, Kyiv, Ukraine, 02094

Senior Researcher, Deputy Director for Research, Head of Department

Department of Organic and Petrochemical Synthesis

References

  1. Korneev, S. V., Kornienko, A. A., Iarmovich, Ia. V. (2013). Obosnovanie ispolzovaniia otrabotannykh masel v kachestve bazovykh dlia prigotovleniia plastichnykh smazok. Sbornik nauchnykh trudov Sword, 12 (3), 34–37.
  2. Dyrektyva 2003/30/YeS. Yevropeiskoho Parlamentu ta Rady pro spryiannia vykorystanniu biolohichnoho palyva abo inshykh vydiv ponovliuvanoho palyva dlia transportu (08.05.2003).
  3. Dyrektyva 2009/28/YeS. Pro stymuliuvannia vykorystannia enerhii z vidnovliuvanykh dzherel (23.04.2009).
  4. Rudnik, L. R.; Danilov, A. M. (Ed.) (2013). Prisadki k smazochnym materialam. Svoistva i primenenie. Saint Petersburg: COP «Professiia», 928.
  5. Solanki, P. V., Uppelli, S. B., Padaki, S. A., Anekal, D., Dahale, S. B., Bembalkarb, S. R., Mathad, V. T. (2015). A Facile Approach for the Synthesis of Highly Pure Immunomodulator Drugs– Leflunomide and Teriflunomide: A Robust Strategy to Control Impurities. World Journal of Pharmaceutical Sciences, 13 (11), 2265–2272.
  6. Talley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L. et. al. (2000). 4-[5-Methyl-3-phenylisoxazol-4-yl]- benzenesulfonamide, Valdecoxib: A Potent and Selective Inhibitor of COX-2. Journal of Medicinal Chemistry, 43 (5), 775–777. doi: http://doi.org/10.1021/jm990577v
  7. Nasr, T., Bondock, S., Eid, S. (2015). Design, synthesis, antimicrobial evaluation and molecular docking studies of some new 2,3-dihydrothiazoles and 4-thiazolidinones containing sulfisoxazole. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (2), 236–246. doi: http://doi.org/10.3109/14756366.2015.1016514
  8. Kamal, A., Bharathi, E. V., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Reddy, M. K. et. al. (2011). Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. European Journal of Medicinal Chemistry, 46 (2), 691–703. doi: http://doi.org/10.1016/j.ejmech.2010.12.004
  9. Selvam, C., Jachak, S. M., Thilagavathi, R., Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15 (7), 1793–1797. doi: http://doi.org/10.1016/j.bmcl.2005.02.039
  10. Potkin, V. I., Bumagin, N. A., Petkevich, S. K., Dikusar, E. A., Semenova, E. A., Kurman, P. V. et. al. (2015) Sintez funkcionalnykh proizvodnykh izoksazola na osnove (5-arilizoksazol-3-il)khlormetanov. Zhurnal organicheskoi khimii, 51 (8), 1140–1150.
  11. Pavliuk, O. V., Holovatiuk, V. M., Bezuhlyi, Yu. V., Kashkovskyi, V. I. (2015). Syntez novykh sulfonilamidnykh pokhidnykh izooksazolu reaktsiieiu metatezysu iz zakryttiam tsyklu. Dopovidi Natsionalnoi akademii nauk Ukrainy, 3, 127–134.
  12. Kuliev, A. M. (1985). Khimiia i tekhnologiia k maslam i doplivam. Moscow: «Khimiia», 312.
  13. Voitov, V. A., Sysenko, I. I., Kravcov, A. G. (2014). Kriterii ocenki kachestva motornogo masla dlia dvukhtaktnykh dvigatelei vnutrennego sgoraniia. Problemi tribologіi (Problems of Tribology), 2, 29–27.
  14. Kuliev, M. A., Efendieva, Kh. K., Ismailov, I. P., Rasulova, F. A. (1992). A. S. No. 1728294 A1 (SSSR). Bezzolnaia protivoiznosnaia prisadka k smazochnym maslam. MPK: C10M 135/36. Declareted: 21.11.1989; published: 23.04.1992, Bul. No. 15, 8.
  15. Gordash, Iu. T., Skliar, V. T., Lebedev, E. V. (1964). A. S. No. 162906. (SSSR). Sposob polucheniia deemulgatora dlia obezvozhivaniia i obessolivaniia nefti. MPK: C10G 33/04. Declareted: 31.10.1962 (No. 801002/23-4); published: 1964, Bul. No. 11, 2.
  16. GOST 11034-2018. Poliamidy. Metod opredeleniia chisla viazkosti razbavlennykh rastvorov (2019). Available at: http://docs.cntd.ru/document/1200159595
  17. DSTU ISO 6320:2015. Popravka No. 1:2015 (ISO 6320:2000/Cor 1:2006, IDT) Zhyry ta olii tvarynni i roslynni. Vyznachennia koefitsiienta zalomlennia. Available at: http://62.149.27.196/DSTU-ISO-6320ssstr2001-nrm10006.html
  18. Piliavskii, V. S., Polunkin, E. V., Kameneva, T. M. (2013). O kineticheskoi prirode nesuschei sposobnosti maloviazkikh gidkostei. Kataliz i neftekhimiia, 22, 37–41.
  19. Pyvovara, V. P. (2010). Metodychni rekomendatsii po khimmotolohii No. 62. Klasyfikatsiia zmashchuvalnykh olyv za viazkistiu i ekspluatatsiinymy kharakterystykamy po HOST ta mizhnarodnym standartam. Vykorystannia klasyfikatsiinykh kharakterystyk dlia vyznachennia vzaiemozaminnosti zarubizhnykh ta vitchyznianykh olyv. Kyiv, 28. Available at: http://10xcentr.com.ua/1/193/310/
  20. Bozhko, O. O., Yesylevskyi, S. O., Cherniavskyi, Ye. K. (2015). Pat. No. 113695 UA. Zastosuvannia 4-(N-hliukozyliden)aminobenzoinoi kysloty yak prysadky dlia pidvyshchennia nesuchoi zdatnosti etanolu – komponenta alternatyvnoho palyva. MPK: C10L 1/182 C10L 1/189. No. a 2015 12015. Declareted: 04.12.2015; published: 27.02.2017, Bul. No. 4.
  21. Pavliuk, O. V., Pyliavskyi, V. S., Sukhovieiev, V. V., Kashkovskyi, V. I. (2019). Zastosuvannia N,N-dialil-(3-arylizooksazol-5-il)-metylensulfonilamidiv yak prysadok dlia pidvyshchennia nesuchoi zdatnosti aviatsiinykh olyv na osnovi esteru pentaerytrytu ta syntetychnykh zhyrnykh kyslot. No. u 2019 07784.

Published

2019-07-12

How to Cite

Pavliuk, O., Sukhoveev, V., Pyliavskyi, V., & Kashkovsky, V. (2019). Research of N,N-diallyl (3-arylisoxasol-5-yl)-methylenesulfonylamides as additives for increasing the load carryng capacity of syntetic oil based on the pentaerythritol esther and butyric acid. Technology Audit and Production Reserves, 4(3(48), 31–34. https://doi.org/10.15587/2312-8372.2019.180178

Issue

Section

Reports on research projects