Analysis of existent concepts of traditional methods of metal whiskers growing. Deposition of substance from the gas phase

Authors

  • Сергей Робленович Артемьев National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000, Ukraine https://orcid.org/0000-0002-9086-2856

DOI:

https://doi.org/10.15587/2312-8372.2016.70512

Keywords:

whiskers, growing methods, metal «whiskers», gas phase, liquid phase

Abstract

Existing presentation about one of the traditional methods of metal whiskers growing – their deposition in the gas phase is considered in the article. This problem in modern conditions given enough attention, so that, no doubt, speaks about the relevance of the research topic. It is found that the whisker growth mechanism during the deposition from the gas phase is based on the dislocation theory positions, while for the growth of a perfect crystal faces must buildup thereon individual atomic layers transferred from the gas phase. It is confirmed that deposition of substances from the gas phase based on evaporation or sublimation of the starting material, its subsequent mass transport through the gas phase and condensation in the deposition zone. It is shown that the production of whiskers by crystallization method from the gas phase through the liquid commonly used for semiconductor whiskers. The peculiarity of the method is that the crystallization of vapor is performed through the liquid intermediate layer. It is analyzed that the transfer of material inside the drop using crystallization method occurs by diffusion, but crystal growth rate is determined by diffusion rate and crystallization rate of substances. Whiskers obtained by VLS, usually have no axial dislocation, their growth doesn’t occur on a screw axial dislocation, independence of their growth rate from crystal thickness is confirmed. The mechanisms of whisker growth during their deposition are investigated. The process of obtaining this group of crystals by crystallization from the gas phase through the liquid is considered.

Author Biography

Сергей Робленович Артемьев, National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000

Candidate of Technical Sciences, Associate Professor

Department of Occupational Safety and technogenic and ecological security 

References

  1. Givargisov, E. I. (1977). Rost nitevidnyh i plastinchatyh kristallov is para. Moscow: Nauka, 304.
  2. Berezhkova, G. V. (1969). Nitevidnye kristally. Moscow: Gosisdat, 158.
  3. Syrkin, V. G. (1983). Karbonily metallov. Moscow: Himiia, 200.
  4. Gribov, B. G., Domrachev, G. A., Zhuk, B. V. (1981). Osazhdenie plenok i pokrytii raslozheniem metalloorganicheskih soedinenii. Moscow: Nauka, 322.
  5. Gabor, B., Blocher, V. (1969). Neposredstvenno nabliudaemyi pod mikroskopom rost zhelesnyh viskerov, himicheski vyrashivaemyh is gasovoi fasy. J. Apple. Phys., № 7, 224–226.
  6. Ivanova, V. S., Gordenko, L. K. (1964). Novye puti povyshcheniia prochnosti metallov. Moscow: Nauka, 118.
  7. Nitevidnye kristally i tonkie plenki. (1975). Materialy II Vsesoiusnoi nauchnoi konferentsii «Nitevidnye kristally». Voronezh: VPI, 466.
  8. Nitevidnye kristally dlia novoi tehniki. (1979). Materialy III Vsesoiusnoi nauchnoi konferentsii «Nitevidnye kristally». Voronezh: VPI, 231.
  9. Ammer, S. A., Postnikov, V. S. (1974). Nitevidnye kristally. Voronezh: VPI, 284.
  10. Shchishchelova, T. I., Stepanova, N. E., Plynskaia, D. A., Beliaeva, M. A. (2009). Nitevidnye kristally. Uspehi sovremennogo estestvosnaniia, № 8, 12–13.
  11. Pomerantseva, E. A., Koslova, M. G., Leonova, L. S., Dobrovol'skii, Yu. A., Kulova, T. L., Skundin, A. M., Gudilin, E. A., Tret'iakov, Yu. D. (2007). Nitevidnye kristally. Materialy Vserossiiskoi konferentsii «Issledovaniia i rasrabotki po prioritetnomu napravleniiu rasvitiia nauki, tehnologii i tehniki «Industriia nanosistem i materialy», 18-19 ianvaria 2007 g., g. Moskva. Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaia energetika i ekologiia», № 1 (45), 126–127.
  12. Hadiia, N. M. A. (2011). Poluchenie i issledovanie opticheskih svoistv poluprovodnikovyh oksidov ZnO2 i Zn2O3. Voronezh, 128.
  13. Riabtsev, S. V., Hadiia, N. M. A., Chernyshchov, F. M., Riabtsev, S. V., Domashchevskaia, E. P. (2009). Osobennosti opticheskih spektrov nitevidnyh nanokristallov SnO2. Materialy 7 Vserossiiskoi konferentsii-shchkoly «Nelineinye protsessy i problemy samoorganisatsii v sovremennom materialovedenii (industriia nanosistem i materialy)», 28 sentiabria-2 oktiabria 2009 g. Voronezh, 308–311.
  14. Domashchevskaia, E. P., Hadiia, N. M. A., Seredin, P. V., Riabtsev, S. V. (2008). Morfologicheskie, strukturnye i opticheskie issledovaniia nanovolokon SnO2, sintesirovannyh is poroshchka SnO. Materialy IV Vserossiiskoi konferentsii «Fisiko-himicheskie protsessy v kondensirovannom sostoianii i na mezhfasnyh granitsah»: «Fagran – 2008», 6-9 oktiabria 2008 g. Voronezh, 367–371.
  15. Wagner, R. S., Ellis, W. C. (1964). Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters, Vol. 4, № 5, 89. doi:10.1063/1.1753975
  16. Deriagin, B. V., Fedoseev, D. V., Luk'ianovich, V. M., Sinitsin, B. V., Riabov, V. A., Lavrent'ev, A. V. (1968). UNF DAN SSSR, № 5, 1094.
  17. McAleer, W. J., Barkemeyer, H. R., Pollak, P. I. (1961). Vapor Phase Growth of Gallium Arsenide Crystals. Journal of The Electrochemical Society, Vol. 108, № 12, 1168–1169. doi:10.1149/1.2427980
  18. Wagner, R. S., Doherty, C. I., Ellis, W. C. (1964). The Journal of The Minerals, Metals & Materials Society, Vol. 16, 761.
  19. James, D. W. F., Lewis, C. (1965, August). Silicon whisker growth and epitaxy by the vapour-liquid-solid mechanism. British Journal of Applied Physics, Vol. 16, № 8, 1089–1094. doi:10.1088/0508-3443/16/8/305
  20. Thornton, P. R., James, D. W. F., Lewis, C., Bradford, A. (1966, July). Silicon whisker growth by the vapour-liquid-solid process. Philosophical Magazine, Vol. 14, № 127, 165–177. doi:10.1080/14786436608218998
  21. Kamadjiev, P. R., Mladjov, L. K., Velchev, N. B. (1966). C. r. Acad. Bujgarie sci., № 19, 779.
  22. Barns, R. L., Ellis, W. C. (1964). The Journal of The Minerals, Metals & Materials Society, Vol. 16, 761.
  23. Barns, R. L., Ellis, W. C. (1965). Whisker Crystals of Gallium Arsenide and Gallium Phosphide Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 36, № 7, 2296. doi:10.1063/1.1714466
  24. Laverko, E. N., Marahonov, V. M., Poliakov, S. M. (1965). Crystallography Reports, № 10, 132.
  25. Holonyak, N., Wolfe, C. M., Moore, J. S. (1965). Vapor-Liquid-Solid Growth of Gallium Phosphide. Applied Physics Letters, Vol. 6, № 4, 64. doi:10.1063/1.1754167
  26. Iida, S., Sugita, Y. (1966). GaAs-Whisker Crystals Containing Germanium Core. Applied Physics Letters, Vol. 8, № 4, 77. doi:10.1063/1.1754494
  27. Sitarik, J. P. (1966). Preparation and Morphology of Boron Filamentary Crystals Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 37, № 6, 2399. doi:10.1063/1.1708826
  28. Wagner, R. S. (1968, January). A solid-liquid-vapor etching process. Journal of Crystal Growth, Vol. 3-4, 159–161. doi:10.1016/0022-0248(68)90117-6
  29. Mutaftschiev, B., Kern, R., Georges, C. (1965, May). Sur le mecanisme vls de croissance des whiskers. Physics Letters, Vol. 16, № 1, 32–33. doi:10.1016/0031-9163(65)90388-4
  30. Barber, D. J. (1964, July). Electron microscopy and diffraction of aluminium oxide whiskers. Philosophical Magazine, Vol. 10, № 103, 75–94. doi:10.1080/14786436408224209
  31. Edwards, P. L., Happel, R. J. (1962). Beryllium Oxide Whiskers and Platelets. Journal of Applied Physics, Vol. 33, № 3, 943. doi:10.1063/1.1777195
  32. Yoda, E. (1960, May 15). Anomalous Growth of MoO 3 Crystals. Journal of the Physical Society of Japan, Vol. 15, № 5, 821–829. doi:10.1143/jpsj.15.821

Published

2016-05-26

How to Cite

Артемьев, С. Р. (2016). Analysis of existent concepts of traditional methods of metal whiskers growing. Deposition of substance from the gas phase. Technology Audit and Production Reserves, 3(3(29), 34–37. https://doi.org/10.15587/2312-8372.2016.70512

Issue

Section

Technologies of food, light and chemical industry