The preparation of biocompatible polymeric fibers by electrospinning method

Authors

  • Олена Володимирівна Іщенко Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-9510-6005
  • Вікторія Петрівна Плаван Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0001-9559-8962
  • Олександр Васильович Ковальчук Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-9404-5853
  • Ірина Олександрівна Ляшок Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0001-9171-1075
  • Вікторія Іванівна Власенко Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-1783-0241

DOI:

https://doi.org/10.15587/2312-8372.2016.76522

Keywords:

electrospun fibers, polymeric biocompatible fibers, nonwoven materials, nanofiber materials, diameter of fibers

Abstract

Object of research – biocompatible nanofiber nonwovens with antiseptic and fungicidal properties obtained by electrospinning method. Biocompatible polymers with additives of bactericidal and fungicidal agents are not before processed by electrospinning method in fiber because of high energy and cost.

A method for producing nonwoven functional polymeric materials by electrospinning method using capillary laboratory unit is proposed. An optimal voltage electric field is 30 kV and the distance between electrodes is 13-15 cm for fibers with a biocompatible polyvinyl alcohol and the decasan addition.

As a research results of morphological features of fibers obtained by optical polarization microscopy it is demonstrated that fibers with diameters ranging from 0,9 to 6,6 mm are obtained under certain electrospinning parameters. As a result of determining the statistical distribution of polymer fibers in the nonwoven material by diameter it is found that 56 % of the fibers have a diameter of 2,6-3,8 mm. Some fibers obtained using laboratory unit of capillary electrospinning meet the nanoscale region, opening prospects to obtain biocompatible nanofibers with antiseptic and fungicidal properties.

Author Biographies

Олена Володимирівна Іщенко, Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011

Candidate of Technical Sciences, Associate Professor

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Вікторія Петрівна Плаван, Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Ecology, Technology of Polymers and Chemical Fiber 

Олександр Васильович Ковальчук, Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011

Doctor of Physical and Mathematical Sciences, Senior Researcher

Department of physic

Ірина Олександрівна Ляшок, Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011

Candidate of Technical Sciences, Associate Professor

Department of Applied Ecology, Technology of Polymers and Chemical Fiber

Вікторія Іванівна Власенко, Kyiv National University of Technologies and Design, 2, Nemirovicha-Danchenko St., Kyiv, Ukraine, 01011

Candidate of Technical Sciences, Associate Professor

Department of Sewing Products Technology and Design 

References

  1. Filatov, Yu. N. (2001). Elektroformovanie voloknistyh materialov (EFVprotsess). Moscow: Mashinostroenie, 231.
  2. Megelski, S., Stephens, J. S., Chase, D. B., Rabolt, J. F. (2002, October). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, Vol. 35, № 22, 8456–8466. doi:10.1021/ma020444a
  3. Burger, C., Hsiao, B. S., Chu, B. (2006, August). Nanofibrous materials and their applications. Annual Review of Materials Research, Vol. 36, № 1, 333–368. doi:10.1146/annurev.matsci.36.011205.123537
  4. Nanospider™ technology. Elmarco. Available: http://www.elmarco.com/electrospinning/electrospinning-technology/. Last accessed: 15.07.2016.
  5. In: Brown, P. J., Stevens, K. (2007). Nanofibers and Nanotechnology in Textiles. Cambridge: Woodhead Publishing Ltd., 518. doi:10.1016/b978-1-84569-105-9.50021-2
  6. Fong, H., Chun, I., Reneker, D. H. (1999, July). Beaded nanofibers formed during electrospinning. Polymer, Vol. 40, № 16, 4585–4592. doi:10.1016/s0032-3861(99)00068-3
  7. Kaplan, D. L., Jin, H.-J., Rutledge, G., Fridrich, S. (09.03.2010). Silk biomaterials and methods of use thereof. Patent US 7674882 B2. Appl. № 11/020,650. Filed 24.06.2002. Available: https://www.google.com/patents/US7674882
  8. Chu, B., Hsiao, B. S., Hadjiargyrou, M., Fang, D., Zong, X., Kim, K. (14.09.2004). Cell delivery system comprising a fibrous matrix and cells. Patent US 6790455 B2. Appl. № 09/953,114. Filed 14.09.2001. Available: https://www.google.com/patents/US6790455
  9. Lelkes, P. I., Li, M., Mondrinos, M., Ko, F. (01.11.2011). Electrospun blends of natural and synthetic polymer fibers as tissue engineering scaffold. Patent US 8048446 B2. Appl. № 11/431,484. Filed 10.05.2005. Available: https://www.google.com/patents/US8048446
  10. Frey, M. W., Joo, Y. L. (10.11.2005). Cellulose solution in novel solvent and electrospinning thereof. Patent US 20050247236 A1. Appl. № 10/834,041. Filed 29.04.2004. Available: https://www.google.com/patents/US20050247236

Published

2016-07-26

How to Cite

Іщенко, О. В., Плаван, В. П., Ковальчук, О. В., Ляшок, І. О., & Власенко, В. І. (2016). The preparation of biocompatible polymeric fibers by electrospinning method. Technology Audit and Production Reserves, 4(4(30), 22–26. https://doi.org/10.15587/2312-8372.2016.76522

Issue

Section

Technologies of food, light and chemical industry