Simulation of intelligent sensors dipping into the melting polymer composite
DOI:
https://doi.org/10.15587/2312-8372.2016.81236Keywords:
polymer composites, extrusion, intelligent sensors, intelligent polymer materialsAbstract
One of the most important parameters of the finished product for intelligent sensors dipping into the melting polymer composite is the dipping depth of the sensors. Indeed, under the control of stress-strain state and other parameters using the sensor it is important to correlate obtained data with the sensor location – namely, the depth of its dipping for continuous product. In this regard, it is important for production to achieve accurate dipping of intelligent sensors at a given depth of the finished product, as, for example, stress measurement error for bending is directly proportional to the level of accuracy of the sensor dipping depth. The depth can vary from zero to mid-thickness of the product.
Dipping simulation of intelligent sensors in the flow of the polymer material is carried out on the basis of the finite element method. Stationary problem is solved in the isothermal approximation. The basis is a generalized Newtonian flow model based on the continuity equation solution of incompressible fluid and momentum conservation.
The study allows to reveal the required pressure ratio in primary and secondary channel with the dipping of intelligent sensors to the desired depth into the melting polymer material. An appropriate size of the finite element, material properties and boundary conditions for calculation are determined. Also the optimum angle of sensor dipping, which is 25°, and empirical equations of pressure ratio impact into additional and main channel to a depth of sensor dipping using approximations of dependencies obtained by numerical simulation are determined.
References
- Mikhaylin, Yu. A. (2008). Spetsial'nyye polimernyye kompozitsionnyye materialy. St. Petersburg: Nauchnyye osnovy i tekhnologii, 660.
- Wallace, G. G. (1992). Intelligent polymer systems-concepts, approaches present uses and potential applications. Material Forum, Vol. 16, № 2, 111–115.
- Wallace, G. G., Teasdale, P. R., Spinks, G. M., Kane-Maguire, L. A. (2008). Conductive Electroactive Polymers: Intelligent Polymer Systems. Ed. 3. Northwest: CRC Press, 263. doi:10.1201/9781420067156
- Barisci, J. N., Conn, C., Wallace, G. G. (1996). Conducting polymer sensors. Trends in Polymer Science, Vol. 4, № 9, 307–311.
- Carpi, F., Smela, E. (2009). Biomedical Applications of Electroactive Polymer Actuators. Chichester: Wiley, 496. doi:10.1002/9780470744697
- Hoffman, A. S. (1995, July). «Intelligent» polymers in medicine and biotechnology. Macromolecular Symposia, Vol. 98, № 1, 645–664. doi:10.1002/masy.19950980156
- Honeychurch, K. C. (2014). Nanosensors for Chemical and Biological Applications. Birmingham: Woodhead Publishing, 372. doi:10.1016/b978-0-85709-660-9.50014-x
- Kolosov, A. E., Sakharov, O. S., Sivetskii, V. I., Sidorov, D. E., Pristailov, S. O. (2011, July). Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 2. Production bases for molding of epoxy repair couplings with shape memory. Chemical and Petroleum Engineering, Vol. 47, № 3-4, 210–215. doi:10.1007/s10556-011-9448-4
- Likhachev, A. N. (2013). Osobennosti sozdaniya «intellektual'nykh» konstruktsiy formo- i razmerostabil'nykh sistem kosmicheskikh apparatov na osnove dielektricheskikh polimernykh materialov. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M. F. Reshetneva, 1 (47), 114–118.
- Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O. (1987). Dynamics of Polymeric Liquids. New York: Wiley-Interscience, 672.
- Barnes, H. A., Hutton, J. F., Walters, K. (1989). An Introduction to Rheology. Amsterdam: Elsevier Science Publishers, 199.
- Dvoynos, Ya. G., Sokolskiy, O. L., Ivitskiy, I. I. (2015). Utochnena metodyka obroblennya eksperymentalʹnykh danykh kapilyarnoyi viskozymetriyi. Visnyk NTUU «KPI». Khimichna inzheneriya, ekolohiya ta resursozberezhennya, 1 (14), 51–54.
- Sokolskiy, O. L., Sivetskiy, V. I., Mikulionok, I. O., Ivitskiy, I. I. (2013). Chyslove modelyuvannya vplyvu prystinnoho sharu na protses techiyi polimeru v pererobnomu obladnanni. Khimichna promyslovist Ukrayiny, 6, 34–37.
- Sokolskiy, O. L., Ivitskiy, I. I., Sivetskiy, V. I., Mikulionok, I. O. (2014). Vyznachennya vyazkosti prystinnoho sharu u formuyuchykh kanalakh obladnannya dlya pererobky polimeriv. Naukovi visti NTUU «KPI», 2, 66–69.
- Sokolskyi, A. L., Ivitskyi, I. I. (2014). Method of Accounting Wall Slip Polymer in Modeling Channel Processing Equipment. Modern Scientific Research and Their Practical Application, 10, 136–140.
- Ivitskiy, I. (2014). Polymer wall slip modelling. Technology Audit And Production Reserves, 5(3(19)), 8–11. doi:10.15587/2312-8372.2014.27927
- ANSYS Polyflow User's Guide. (2013). Canonsburg: ANSYS, Inc., 790.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Ігор Ігорович Івіцький, Олександр Леонідович Сокольський, Валерій Миколайович Куриленко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.