Simulation of intelligent sensors dipping into the melting polymer composite

Authors

  • Ігор Ігорович Івіцький National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-9749-6414
  • Олександр Леонідович Сокольський National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7929-3576
  • Валерій Миколайович Куриленко National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1606-5007

DOI:

https://doi.org/10.15587/2312-8372.2016.81236

Keywords:

polymer composites, extrusion, intelligent sensors, intelligent polymer materials

Abstract

One of the most important parameters of the finished product for intelligent sensors dipping into the melting polymer composite is the dipping depth of the sensors. Indeed, under the control of stress-strain state and other parameters using the sensor it is important to correlate obtained data with the sensor location – namely, the depth of its dipping for continuous product. In this regard, it is important for production to achieve accurate dipping of intelligent sensors at a given depth of the finished product, as, for example, stress measurement error for bending is directly proportional to the level of accuracy of the sensor dipping depth. The depth can vary from zero to mid-thickness of the product.

Dipping simulation of intelligent sensors in the flow of the polymer material is carried out on the basis of the finite element method. Stationary problem is solved in the isothermal approximation. The basis is a generalized Newtonian flow model based on the continuity equation solution of incompressible fluid and momentum conservation.

The study allows to reveal the required pressure ratio in primary and secondary channel with the dipping of intelligent sensors to the desired depth into the melting polymer material. An appropriate size of the finite element, material properties and boundary conditions for calculation are determined. Also the optimum angle of sensor dipping, which is 25°, and empirical equations of pressure ratio impact into additional and main channel to a depth of sensor dipping using approximations of dependencies obtained by numerical simulation are determined.

Author Biographies

Ігор Ігорович Івіцький, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Senior Lecturer

Department of Chemical, Polymer and Silicate Engineering

Олександр Леонідович Сокольський, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Chemical, Polymer and Silicate Engineering

Валерій Миколайович Куриленко, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

Assistant

Department of Chemical, Polymer and Silicate Engineering

References

  1. Mikhaylin, Yu. A. (2008). Spetsial'nyye polimernyye kompozitsionnyye materialy. St. Petersburg: Nauchnyye osnovy i tekhnologii, 660.
  2. Wallace, G. G. (1992). Intelligent polymer systems-concepts, approaches present uses and potential applications. Material Forum, Vol. 16, 2, 111–115.
  3. Wallace, G. G., Teasdale, P. R., Spinks, G. M., Kane-Maguire, L. A. (2008). Conductive Electroactive Polymers: Intelligent Polymer Systems. Ed. 3. Northwest: CRC Press, 263. doi:10.1201/9781420067156
  4. Barisci, J. N., Conn, C., Wallace, G. G. (1996). Conducting polymer sensors. Trends in Polymer Science, Vol. 4, № 9, 307–311.
  5. Carpi, F., Smela, E. (2009). Biomedical Applications of Electroactive Polymer Actuators. Chichester: Wiley, 496. doi:10.1002/9780470744697
  6. Hoffman, A. S. (1995, July). «Intelligent» polymers in medicine and biotechnology. Macromolecular Symposia, Vol. 98, № 1, 645–664. doi:10.1002/masy.19950980156
  7. Honeychurch, K. C. (2014). Nanosensors for Chemical and Biological Applications. Birmingham: Woodhead Publishing, 372. doi:10.1016/b978-0-85709-660-9.50014-x
  8. Kolosov, A. E., Sakharov, O. S., Sivetskii, V. I., Sidorov, D. E., Pristailov, S. O. (2011, July). Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 2. Production bases for molding of epoxy repair couplings with shape memory. Chemical and Petroleum Engineering, Vol. 47, № 3-4, 210–215. doi:10.1007/s10556-011-9448-4
  9. Likhachev, A. N. (2013). Osobennosti sozdaniya «intellektual'nykh» konstruktsiy formo- i razmerostabil'nykh sistem kosmicheskikh apparatov na osnove dielektricheskikh polimernykh materialov. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M. F. Reshetneva, 1 (47), 114–118.
  10. Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O. (1987). Dynamics of Polymeric Liquids. New York: Wiley-Interscience, 672.
  11. Barnes, H. A., Hutton, J. F., Walters, K. (1989). An Introduction to Rheology. Amsterdam: Elsevier Science Publishers, 199.
  12. Dvoynos, Ya. G., Sokolskiy, O. L., Ivitskiy, I. I. (2015). Utochnena metodyka obroblennya eksperymentalʹnykh danykh kapilyarnoyi viskozymetriyi. Visnyk NTUU «KPI». Khimichna inzheneriya, ekolohiya ta resursozberezhennya, 1 (14), 51–54.
  13. Sokolskiy, O. L., Sivetskiy, V. I., Mikulionok, I. O., Ivitskiy, I. I. (2013). Chyslove modelyuvannya vplyvu prystinnoho sharu na protses techiyi polimeru v pererobnomu obladnanni. Khimichna promyslovist Ukrayiny, 6, 34–37.
  14. Sokolskiy, O. L., Ivitskiy, I. I., Sivetskiy, V. I., Mikulionok, I. O. (2014). Vyznachennya vyazkosti prystinnoho sharu u formuyuchykh kanalakh obladnannya dlya pererobky polimeriv. Naukovi visti NTUU «KPI», 2, 66–69.
  15. Sokolskyi, A. L., Ivitskyi, I. I. (2014). Method of Accounting Wall Slip Polymer in Modeling Channel Processing Equipment. Modern Scientific Research and Their Practical Application, 10, 136–140.
  16. Ivitskiy, I. (2014). Polymer wall slip modelling. Technology Audit And Production Reserves, 5(3(19)), 8–11. doi:10.15587/2312-8372.2014.27927
  17. ANSYS Polyflow User's Guide. (2013). Canonsburg: ANSYS, Inc., 790.

Published

2016-09-29

How to Cite

Івіцький, І. І., Сокольський, О. Л., & Куриленко, В. М. (2016). Simulation of intelligent sensors dipping into the melting polymer composite. Technology Audit and Production Reserves, 5(3(31), 22–26. https://doi.org/10.15587/2312-8372.2016.81236

Issue

Section

Technologies of food, light and chemical industry