On connection of modern geodynamic processes in carbonate rocks with tectonic activization of Petrivs’k-Kreminna fault
DOI:
https://doi.org/10.26565/2410-7360-2017-46-07Keywords:
fault, geodynamic processes, fluid-dynamic system heat and mass transfer, hydrogeochemical anomalies, tectonic activation, brachyanticline, carbonate rocks, suffusion, karstAbstract
The given paper considers the connection of modern geodynamic processes in carbonate rocks with the tectonic activation of Petrivs’k-Kreminna fault. It is emphasized that faults in the region are the channels of the upward heat and mass transfer.
The unloading of deep formation waters and endogenous fluids in the area Petrivs’k-Kreminna and other faults results from heat and mass transfer, which is brought about by the motions of lithospheric blocks of Donets’k folded structure.
The present tense dynamic state of the geological system manifests itself in the constant uplifting of the hanging wings of Svyatohirs’k brachyanticline at a speed of 1,3-2,5 mm a year. Earthquakes with the focal depth of ~10 km are associated with periodic geodynamic stress relaxation in the Archean-Proterozoic basement complex in the ancient geologically closed submeridional fault that intersects within Svyatohirs’k structure with the Petrivs’k-Kreminna fault. The modern and most recent tectonic activation of the latter is evidenced in the formation of hypogenic hydrogeochemical anomalies, accompanied by hydrochemical inversion. The groundwater here exhibit alkaline reaction (pH up to 8,2), an increased temperature (19-
27 °C) in the range of 0-300 m and a high content of hypogenic trace elements, among which carbon dioxide takes pride of place.
The presence of CO2 increases the aggressiveness of underground water towards carbonate rocks, resulting in a chemical geodynamic process referred to as karst. Furthermore, abnormal physical and chemical properties of groundwater bring about suffusion processes in loamy, chalk strata of rocks. These geodynamic processes are associated with geological risks for buildings of Svyatohirs’k monastery.
The study found that: 1) the tectonic activation of the Petrivs’k-Kreminna fault in various and, above all, the modern and contemporary periods of Alpine tectonogenesis is the dominant energy basis of geodynamic processes, including seismic activity; 2) carbon dioxide as atmospheric and deep genesis present in the groundwater of different types, is the major factor in the development of carbonate karst in Svyatohirs’k brachyanticline; 3) the isotopic analysis of δ13C and δ18O in aragonite chalk powder clearly showed that recrystallization of chalk into aragonite occurred involving deep formation waters saturated with endogenous (metamorphogenic or mantle) CO2.
References
1. Belokon', V. G. (1968). Neotektonicheskie dvizhenija v Donbasse i ih svjaz' so strukturnymi jelementami. V kn. “Materialy po geologii Doneckogo bassejna”. M., Nauka, 11–15.
2. Belokon', V. G. (1981). O glubinnom istochnike jenergii ugleobrazovanija formacii Doneckogo bassejna. Geologicheskij zhurnal, 41, 6, 88–99.
3. Belokon', V. G. (1984). Bassejn r. Severskij Donec kak geodinamicheskaja sistema, otrazhajushhaja processy bol'shih glubin. Geologicheskij zhurnal, 34, 5, 11–27.
4. Beskrovnyj, N. S., Kudrjavceva, E. I., Lobkov, V. A. (1975). Izotopnyj sostav ugleroda prirodnyh gazov Kamchatki. Geohimija, 11, 1660–1667.
5. Garrels, R. M., Krajst, Ch. L. (1968). Rastvory, mineraly, ravnovesija. M., Mir, 368.
6. Degens, Je. T. (1974). Biogeohimija ustojchivyh izotopov ugleroda. V kn. “Organicheskaja geohimija”. L., 207–226.
7. Kaljuzhnyj, V. A. (1978). Sovremennoe sostojanie problemy «Uglerod i ego soedinenija v jendogennyh processah mineraloobrazovanija (po vkljuchenijam v mineralah). V sb. «Uglerod i ego soedinenija v jendogennyh processah mineraloobrazovanija (po dannym izuchenija fljuidnyh vkljuchenij v mineralah»)». K., Naukova dumka, 3–16.
8. Kissin, I. G., Pahomov, S. I. (1969). K geohimii uglekisloty v glubokih zonah podzemnoj gidrosfery. Geohimija, 4, 460–471.
9. Konashov, V. G. (1983). Mezozojskij jetap tektogeneza v Doneckom bassejne. Geologicheskij zhurnal, 3, 96–102.
10. Lazarenko, E. K., Panov, B. S., Pavlishin, V. I. (1975). Mineralogija Doneckogo bassejna, ІІ. K., Naukova dumka, 502.
11. Lushhik, A. V., Lisichenko, G. V., Jakovlev, E. O. (1988). Formirovanie rezhima podzemnyh vod v rajonah razvitija aktivnyh geodinamicheskih processov. K., Naukova dumka, 164.
12. Mejson, B. (1971). Osnovy geohimii, M., Nedra, 312.
13. Naboko, S. I. (1980). Metallonosnost' sovremennyh gidroterm v oblastjah tektonomagmaticheskoj aktivizacii. M., Nauka, 199.
14. Nacіonal'nij atlas Ukraїni (2009). K., DNVC «Kartografіja», 440.
15. Skarzhinskij, V. I. (1973). Endogennaja metallogenija Donbassa. K., Naukova dumka, 203.
16. Sokolov, D. S. (1962). Osnovnye uslovija razvitija karsta. M., Gosgeoltehizdat, 321.
17. Sukhov, V. V. (2012). O rezul'tatah jeksperimentov po izucheniju vlijanija processov zamerzanija i tajanija kapilljarnyh i treshhinnyh vod na gornye porody. Materіali nauk.-prakt. konf. «Regіon – 2012. Strategіja optimal'nogo rozvitku». Harkіv, 309–312.
18. Sukhov, V. V., Sujarko, V. G., Serdjukova, O. O. (2015). Gіdrogeologіchnі osoblivostі karbonatnogo karstu. Science Rise, 7/1 (12), 23–27.
19. Sujarko, A. V. (1968). Rol' zon razgruzki glubinnyh vod v vyjasnenii prirody geotermicheskih anomalij i rudnoj mineralizacii v Zapadnom Donbasse. ІІ geol. konferencija «Stepanovskie chtenija». Artemovsk, 161–163.
20. Sujarko, V. G. (1984). Osobennosti formirovanija vertikal'noj gidrogeohimicheskoj zonal'nosti v mezozojskih strukturah Doneckogo progiba. Geologicheskij zhurnal, 44, 1, 127–130.
21. Sujarko, V. G. (2006). Geohimija podzemnyh vod vostochnoj chasti Dneprovsko-Doneckogo avlakogena. Har'kov, KhNU imeni V. N. Karazina, 225.
22. Sujarko, V. G., Sukhov, V. V. (2015). Konceptual'na sinergetichna geologo-gіdrogeologіchna model' rozvitku sufozії ta karstu u karbonatnih porodah na teritorії Svjatogіrs'kogo monastirja. Vіsnyk KhNU іmenі V. N. Karazіna, serіja «Geologіja. Geografіja. Ekologіja», 1157, 63–68.
23. Fil'kin, V. A. (1986). Opyt sostavlenija karty sovremennyh dvizhenij zemnoj kory po territorii Donbassa. Sovremennye dvizhenija zemnoj kory. K., Naukova dumka, 216–221.
24. Fournier, F. (1960). Climatel erosion. Press Universitaries de France. Paris, 120.
25. Sukhov, Valeriy (2015). Forecast of potential natural risks for the historical and architectural sights of the Holy Mountains Lavra (Sviatohirsk Monastery).Young Scientist USA, 4. Lulu, USA, 126-130.
26. Wiebe, R., Gaddy, V. L. (1940). The solubility of carbon dioxide in water at various temperature from 12 to 40o and at pressures to 500 atmospheres. Critical phenomena. J. Am. Ckem. Soc., 62, 815–817.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Валерій Васильович Сухов, Василь Григорович Суярко, Олександр Володимирович Чуєнко
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).