QUATERNARY LANDSLIDES OF THE SOUTHERN COAST OF CRIMEA GEOLOGICAL FORMATION CONDITIONS

Authors

  • K. Є. Бойко ESI “Institute of Geology” of Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.26565/2410-7360-2015-43-04

Keywords:

shallow landslides, cartographic modeling, historical-geological method, geomorphological conditions, slope stability

Abstract

The number of landslides within the Southern Coast of Crimea is constantly growing. However, the analysis of previous studies indicates that the landslide formation process mainly depends not so much on the impact of anthropogenic factors but on the influence of nature controlled conditions characteristic of the mountainous region. These conditions include geological-lithological, geological-morphological, climatic and hydrogeological. Thus, the analysis of quaternary structural forms and their display in the relief, as well as of the relief evolution resulting from endogenous and exogenous processes should serve as a basis for correct prediction of contemporary landslide activation and landslide-hazard area modeling. The aim of the article is to analyze and identify major regularities of the relief and the geological structure as the cover landslide development environment and substantiate the use of certain geomorphological and geological criteria for the purpose of classification of the study area according to the landslide hazard degree. In the course of the study we used the key provisions of H.S. Zolotariov’s historical-geological analysis and V.P. Filosofov’s morphometric analysis. As a result, spatial and depth limits of shallow landslide development have been outlined. In addition, the area has been divided into sites according to the potential stability of the geological environment. The obtained results will be further used to build a mapping model and conduct quantitative prediction of landslide-hazard areas of the Southern Slope of the Crimean Mountains.


Author Biography

K. Є. Бойко, ESI “Institute of Geology” of Taras Shevchenko National University of Kyiv

PhD student

References

Gulakjan, K. A., Kjuntcel', V. V., Postoev, V. P. (1977). Prognozirovanie opolznevyh processov [Forecasting of landslides]. Moscow: Nedra, 135.

Bilets'kyy, S. V. (2006). Derzhavna heolohichna karta Ukrayiny masshtabu 1:200000, arkushi L-36-XXVIII (Yevpatoriya), L-36-XXXIV (Sevastopol'). Kryms'ka seriya [State Ukraine geological map scale of 1: 200,000 sheets L-36-XXVIII (Yevpatoriya), L-36-XXXIV (Sevastopol). Crimean series], Kyyiv: State Geological Service, the State enterprise «Pivdenekoheotsentr.

Emel'janova, E. P. (1972). Osnovnye zakonomernosti opolznevyh processov [Basic laws of landslide processes]. Moscow: Nedra, 308.

Erysh, I. F., Salomatin, V. N. (1999), Opolzni Kryma. Ch.1. Istoriya otechestvennogo opolznevedeniya [Crimean landslides. Part1. The history of national landslide science]. Simferopol: Apostrof, 247.

Zolotarev, G. S. (1983), Inzhenernaya geodinamika [Engineering Geodynamics], Moscow: Moscow University, 328.

Neklyudov, G. D., Storchak, N. P. (1976). Karta inzhenerno-geologicheskogo rayonirovaniya YuBK masshtaba 1:25000, list L-36-128-A-b,B-a [Geotechnical zoning Map of Crimean South Coast of scale 1: 25,000, sheet L-36-128-A-b,B-a], Yalta: Assosiation «Krymmorgeologiya», Crimean complex Geological Prospecting Expedition.

Kuprash, R. P. (1974). Pro zastosuvannya geomorfologichny`x metodiv pry` proektuvanni girs`ky`x avtomobil`ny`x shlyaxiv (na pry`kladi girs`kogo Kry`mu) [About the application of geomorphic techniques to the design mountain roads (on example, the Crimean mountain area)]. Physical geography and geomorphology, 11, 109-113.

Ryazankin, P. (2012). Monitory`ng poshy`rennya ta rozvy`tku inzhenerno-geologichny`x procesiv ta yavy`shh (EGP) v mezhax tery`toriyi Avtonomnoyi Respubliky` Kry`m ta zemel` m. Sevastopolya z metoyu geologichnogo zabezpechennya UIAS NS ta proty`zsuvny`x zaxodiv za 2011 r. [Monitoring the spreading and development of geological processes and phenomena (EGP) within the territory of the Autonomous Republic of Crimea and land in Sevastopol for the purpose of providing geological UIAS NA and landslide events in 2011], Yalta: ME «Pivdenekogeocentr», 68.

Pasynkov, A. A., Plahotnyj, L. G., Gorbatjuk, V. M. (1992). Morfotektonika Krymskogo poluostrova i ee svjaz' s razvitiem jekzogennyh geologicheskih processov [Morphotectonics of Crimean peninsula and its relationship with the development of exogenous geological processes]. Geological journal, 2, 79–91.

10. Sheko, A. I. (1979). Prognoz ekzogennykh geologicheskikh protsessov na Chernomorskom poberezhe SSSR [Exogenous geological processes forecasting on the Black Sea coast of the USSR]. Moscow: Nedra, 239.

11. Rud'ko, G. I., Erysh, I. F. (2006). Opolzni i drugie geodinamicheskie protsessy gornoskladchatykh oblastey Ukrainy (Krym, Karpaty) [Landslides and other geodynamic processes of mountain regions of Ukraine (Crimea, Carpathians], Kiev: Zadruga, 624.

12. Filosofov, V. P. (1960). Kratkoe rukovodstvo po morfometricheskomu metodu poiska tektonicheskikh struktur [Quick Reference Guide of morphometric method of tectonic structures search], Saraton: Saratov University, 69.

13. Fomenko, I. K. (2014). Metodologiya otsenki i prognoza opolznevoy opasnosti [Methodology for estimating and forecasting landslide hazard]. Moscow, 318.

14. Judin, V. V. (2013). Uglovye nesoglasija v obnazhenijah Kryma i sejsmicheskih razrezah [Angular unconformity in Crimean outcrops and the seismic sections]. Scientific Papers of UkrSGSI, 4, 127–136.

15. Carrara, M., Cardinali, M., Detti, R. (1999). GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Processes and Landforms, 16, 427–445.

16. Dhaka, A. S., Amada, T., Aniya, M. (2000). Landslide Hazard Mapping and its Evaluation Using GIs: An Investigation of Sampling Schemes for a Grid-Cell Based Quantitative Method. Photogrammetric Engineering & Remote Sensing, 66, 981–989.

17. Naqa, A. E., Abdelghafoor, M. (2006). Application of SINMAP Terrain Stability Model Along Amman-Jerash-Irbid Highway, North Jordan. EJGE, 11, 2–19.

18. Virajh Dias, A. A., Gunathilake, J. K. (2014). Evaluation of Sensitivity of the WAA and SINMAP Models (Static) for Landslide Susceptibility Risk Mapping in Sri Lanka. Landslide Science for a Safer Geoenvironment, 2, 167–173.

19. Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181–216.

20. Park, D. W., Nikhil, N. V., Lee, S. R., Park, D. W (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth Systems Science, 13, 2833–2849.

Published

2016-04-19

Issue

Section

Geology