Environmental safety of associated water reservoir and iodine production

Authors

  • Н. М. Німець Ukrainian Research Institute for Natural Gases, Ukraine
  • А. П. Мельник Ukrainian Research Institute for Natural Gases, Ukraine
  • М. О. Подустов National Technical University “Kharkiv Polytechnical Institute”, Ukraine

DOI:

https://doi.org/10.26565/2410-7360-2016-45-21

Keywords:

deposit, water, iodide ion, iodine, ozone treatment, time, ratio

Abstract

The iodine production process from associated water reservoir at the gas condensate field in Ukraine with different salinity from 10 to 200 g/dm3are studied. The mixture ratio between iodide and bromide ions in solutions is 1:16. Ozonation is implemented in tubular-type reactor with intensive dispersant. Ozone is produced on the plant GL 3189. The plant productivity is 6.63·10-2 m3/hr of air. Ozone level is 6.28·10-2 g-mol/m3. Dependence of conversion degree changes of iodide ions into iodine from molar ion ratio is calculated. It is proved that during ozonation 20% of the formed iodine is removed from the reaction zone by air. It is confirmed that during iodine extraction from gas condensate fields water by ozonation method, the rate of iron conversion (II) to iron (III) increases which reduces the time of arrangement to return the produced water in the bowels of deep horizons. The developed mathematical model and pattern allows to calculate the degree of iodine formation when changing the molar ion ratio of reagents in various concentrations of iodide ions. The obtained results can be used to create safe technology of iodine production from the associated water reservoir. The produced water arrangement method of returning it in the bowels significantly reduces the water retention time to ensure the ecological safety.

Author Biographies

Н. М. Німець, Ukrainian Research Institute for Natural Gases

Head of Department

А. П. Мельник, Ukrainian Research Institute for Natural Gases

Doctor of Sciences (Technics)

М. О. Подустов, National Technical University “Kharkiv Polytechnical Institute”

Doctor of Sciences (Technics), Full Professor

References

Ksenzenko, W. I., Stasinewich, D. S (1995). Chimija i technologia broma, joda i ich soedineniy [Chemistry and Technology of bromine, iodine and compounds thereof]. Moscow, Chemystry, 299.

Lanina, T. D., Litvinenko, V. I., Varfolom, B. G. (2006). Procesi pererabotki plastovikh vod mestorogdenia uglevodorodov [The processes of formation water processing of hydrocarbons]. Ukhta, UGTU, 172.

Gaev, А. Ya., Khomentovski, А. S., Кarasi, О. I. (1987). Podzemnoe zahoronenie stochnikh vod na predpriyatiyah gazovoi promishlennosti [Underground disposal of waste water in the gas industry enterprises]. L., Nedra, 167.

Kiekpaev, М. А., Ponomareva, P. А., Stroeva, E. V. (15.06.85). Certificate of authorship 1161459, C 01 B 7/14, BI 22. Sposob izvlecheniya ioda (SSSR).

Vlasow, G. A., Buchina, N. D., Buravtseva, G. I., Muchametchina, L. W. (2002). Pat. 2186721 RU, C01B7/14.; declared 22.12.1999; published 12.08.2002. Aviable at: freepftent.ru˃patents/

Isupov, W. K., Galkin, B. Ja., Anisimow, O. P. (1997). The method of iodine from water drilling. Pаt. 2100271 RU, МPК. declared. 12.09.1955: published 27.12.1997. Aviable at: freepatent.ru˃patents/

Pat. USA 4487752. Method for producing iodine or iodine derivatives, MPK C01B7/14; 11.12.84, RGH 1985, 18L29P.

Gogorishvili, P. V. А. s. № 575–45/3387–46 SSSR. Sposob videlenia ioda iz burovih vod [The method of iodine from water drilling], 18.05.45.

Kaut, V. M., Gobov, S. L., Chusova, L. L. (1983). Voprosi khimii i khimicheskoi tehnologii [Questions of chemistry and chemical technology], 70, 88 – 91.

10. Trochimenko, O. M., Zaictev, W. M., Golub, O. A., Ananjewa, W. W. (2008). Ion exchange method iodine extraction from natural brin. Patent of Ukraine 98104 UA С01В7/00. declared 27.06.2008; published. 2012, 8. Aviable at: uapatents.com ˃6-98104.

11. Fedulov, Ju. N., Gukova, N. G., Zorina, A. I., Danilov, V. P. (1998). Pat. 2113402 RU. МPК С01В/14. Method of extracting iodine from solutions. Declared Patent of Russia 03.10.1993; published 20.06.1998.

12. Pilar, E. A., Gusman, M. J., Rodriges, J. M. (2013). Journal of Environmental Science and Technology, 47, 10971-10979.

13. Rip G. Rice (1995). The Jornal of the Swimming Pool and Spc Indastry, 1, 25–44.

14. Shapovalova, E. A. (2013). Razrabotka bezreagentnogo cposoba izvlecheniya i bezopesnoi utilizacii ioda iz podzemnih vod neftedazovih mestorogdeniy [Development reagent-free method for recovering and recycling bezopesnoy iodine from underground water deposits neftedazovyh]. TyumGNGU, Tyumen, 24.

15. Gannotskaya, E. D. (2015). Razrabotka ekologicheski bezopasnoi tehnologii elektrokoagulytsionnoi demineralizatsii neftynih stochnih plastovih vod (na primere mestorogdeniya Dish Krasnodarskogo kraya) [The development of environmentally sound technology electrocoagulation demineralization of oil wastewater reservoir waters on an example of deposits Dysh Krasnodar Territory]. KubGU, Krasnodar, 24.

16. Reznikow, А. А., Mulikovskaja, Е. P., Sokolov, I. Iu. (1970). Analiticheskaay chimia promishltnnih stochnih vod [Methods of analysis of natural waters]. Мoskow, Nedra, 488.

17. Lurye, Yu. Yu. (1984). Analiticheskaja chimia promichlenich stochnich wod [Analytical chemistry and industrial waste water]. Мoskow, Chimia, 448.

18. Actckurin, S V. (2016). Vliyanie razlichnich faktorov na process izvlechtniya bromid- i jodid-ionov iz mineralnich istochnikov [Influence of various factors on the recovery process of bromide and iodide ions from the natural mineral springs]. SGU, Saratov, 24.

19. Granichno dopustimi koncentracii (GDK) ta orientovno bezpechni rivni (OBRD) zabrudniuuchikh rechovin v atmosfernomu povitri naselenih mists (1996). Kiev, 65.

20. Melnik, А. P., Nimets, N. M., Krivulya, S. V. (2016). Chodo vikoristannia suputno-plastovich vod gazokondensatnich rodovish [About the use of reservoir water passing-condensate fields]. Science without borders, 17, 23–29.

Published

2017-03-17

Issue

Section

Ecology