Neural network models of local time curves of seismic waves
DOI:
https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116802Abstract
To generalize the problem of the travel time assessment the artificial neuron networks are used. This approach makes possible to build the nonlinear model of seismic wave phase propagation as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. The 3D travel time curves for three Ukrainian seismic stations are presented together with the deviation from global travel time data.References
Колмогоров А. Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // Докл. АН СССР. - 1956. - 108, № 2. - С. 179-182.
Лазаренко М. А., Герасименко О. А. Використання нейронних мереж для побудови годографів сейсмічних хвиль // Вісн. Київ. нац. ун-ту. Геологія. - 2004. - Вип. 30. - С. 93-98.
Лазаренко М. А., Герасименко О. А. Моделювання сейсмічної анізотропії акваторії Чорного моря за допомогою мереж штучних нейронів // Вісн. Київ. нац. ун-ту. Геологія. - 2008. - Вип. 45. - С. 18-23.
Лазаренко М. А., Герасименко О. А. Нейросетевое моделирование годографов сейсмических волн // Геофиз. журн. - 2010. - 32, № 5. - С. 126-141.
Chauvin Y., Rumelhart D. Back Propagation: Theory, Architectures, and Applications. - New-Iork: Lawrence Erlbaum Associates, 1995. - 561 р.
Chen C., Chen H. Universal Approximation to Nonlinear Operators Neural Networks with Arbitrary Activation Function and its Application to Dinamical Systems // Neural Networks. - 1995. - № 6. - P. 911-917.
Jeffreys H., Bullen K. Seismological Tables. - London: British Association Seismological Committee, 1940. - 145 р.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).