Functionals, functors and ultrametric spaces
DOI:
https://doi.org/10.15673/2072-9812.1/2014.29270Słowa kluczowe:
Ultrametric space, functionalAbstrakt
We consider different classes of functionals defined on the set of continuous functions on ultrametric spaces. Similarly as in the case of probability measures, idempotent measures, max-min measures and upper semicontinuous capacities we endow the sets of functionals with ultrametrics. We consider some relations between the obtained spaces of functionals. We also discuss the question of completeness.Bibliografia
L. Bazylevych, D. Repovš, M. Zarichnyi, Spaces of idempotent measures of compact metric spaces. - Topol. Appl., 157 (2010), P. 136-144.
T. Banakh, T. Radul, F-Dugundji spaces, F-Milutin spaces and absolute F-valued retracts. - http://arxiv.org/abs/1401.2319vl
M. Cencelj, D. Repovš, M. Zarichnyi, Max-min measures on ultrametric spaces. - Topology Appl. 160 (2013), no. 5, 673-681.
O. Hubal, Capacity functor on the category of ultrametric spaces. - Mat. Stud. 32(2009), 132-139.
O. Hubal, M. Zarichnyi, Idempotent probability measures on ultrametric spaces. - J. Math. Anal. Appl. 343(2008), 1052-1060.
B. Hughes, Trees and ultrametric spaces: a categorical equivalence. - Advances in Math. 189, Issue 1, 148-191.
Lin Zhou, Integral representation of continuous comonotonically additive functionals. -Trans. Amer. Math. Soc. 350 (1998), 1811-1822.
A. Savchenko, M. Zarichnyi, Fuzzy ultrametrics on the set of probability measures. - Topology, Volume 48, Issue 2-4, June 2009, Pages 130-136.
T. Radul, On the functor of order-preserving functionals. - Comment. Math. Univ. Carolinae, 39 (1998), 609-615.
V. Valov, Extenders and k-metrizable compacta. - Mat. Zametki, 89 (2011), 331-341.
E.P. de Vink, J.J.M.M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach. - Theoretical Computer Science, 221(1999), 271-293.