Решение нестационарных обратных задач теплопроводности для многослойных тел на основе эффективного поиска регуляризирующего параметра
Ключевые слова:
обратная задача теплопроводности, тепловой поток, термическое контактное сопротивление, метод регуляризации А. Н. Тихонова, функционал, стабилизатор, параметр регуляризации, идентификация, аппроксимация, сплайн Шёнберга третьей степениАннотация
В статье для получения устойчивого решения обратной задачи теплопроводности (ОЗТ) применяется метод А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомые тепловой поток на границе и термическое контактное сопротивление по временной координате аппроксимируются сплайнами Шёнберга третьей степени. В качестве стабилизирующего функционала используется сумма квадратов искомой величины, её первой и второй производных. В качестве объекта исследования рассматриваются многослойные пластины или оболочки, к которым можно отнести и корпуса твердотопливных ракетных двигателей. В первом приближении задача рассматривается в одномерной нестационарной линейной постановке. Соотношение толщины оболочки к её радиусу будем считать таким, что в уравнении теплопроводности кривизной оболочки можно пренебречь и рассматривать её как плоскую пластину. Такое допущение выбрано для упрощения изложения материала и не ограничивает применимость излагаемой методики в случае осевой симметрии оболочки, а также при переводе математической модели из прямоугольной в цилиндрическую систему координат. Рассматриваются три обратные задачи. В первых двух определяются тепловые потоки в составном теле с идеальным и реальным тепловым контактом. В третьей ОЗТ при реальном тепловом контакте определяется термическое контактное сопротивление. Тепловые потоки в многослойных телах представляются в виде линейных комбинаций сплайнов Шёнберга третьей степени с неизвестными коэффициентами, которые вычисляются путём решения системы линейных алгебраических уравнений. Эта система является следствием необходимого условия минимума функционала, в основу которого положен принцип наименьших квадратов отклонения моделируемой температуры от температуры, полученной в результате теплофизического эксперимента. Для регуляризации решений ОЗТ в этом функционале в качестве слагаемого к сумме квадратов используется стабилизирующий функционал с параметром регуляризации в качестве мультипликативного множителя. Он представляет собой сумму квадратов тепловых потоков, их первых и вторых производных с соответствующими множителями. Эти множители выбираются согласно заранее известным свойствам искомого решения. Поиск регуляризирующего параметра осуществляется с помощью алгоритма, аналогичного алгоритму поиска корня нелинейного уравнения.Библиографические ссылки
Beck, J., Blakuell, B., & Sent-Kler, Ch.Jnr. (1989). Nekorrektnyye obratnyye zadachi teploprovodnosti [Ill-conditioned inverse heat conduction problems].Moscow: Mir, 312 p. (in Russian).
Matsevityy, Yu. M. (2003). Obratnyye zadachi teploprovodnosti: v 2 t. T. 1. Metodologiya. T. 2. Prilozheniya [Inverse problems of heat conduction: in 2 vols. Vol. 1. Меtodologiya. Vol. 2. Applications]. Kiyev: Naukova dumka, 408 p. (vol. 1), 392 p. (vol. 2) (in Russian).
Kozdoba, L. A. & Krukovskiy, P. G. (1982). Metody resheniya obratnykh zadach teploperenosa [Methods for solving inverse heat transfer problems]. Kiyev: Naukova Dumka, 360 p. (in Russian).
Alifanov, O. M., Artyukhin, Ye. A., & Rumyantsev S. V. (1988). Ekstremalnyye metody resheniya nekorrektnykh zadach [Extreme methods for solving ill-conditioned problems]. Мoscow: Nauka, 288 p. (in Russian).
Tikhonov, A. N. & Arsenin, V. Ya. (1975). Metody resheniya nekorrektnykh zadach [Methods for solving ill-conditioned problems]. Moscow: Nauka, 288 p. (in Russian).
Matsevityy, Yu. M. & Slesarenko A. P. (2014). Nekorrektnyye mnogoparametricheskiye zadachi teploprovodnosti i regionalno-strukturnaya regulyarizatsiya ikh resheniy [Ill-conditioned multi-parameter heat conduction problems and regional-structural regularization of their solutions]. Kiyiv: Naukova dumka, 292 p. (in Russian).
Matsevityy, Yu. M., Slesarenko, A. P., & Ganchin, V. V. (1999). Regionalno-analiticheskoye modelirovaniye i identifikatsiya teplovykh potokov s ispolzovaniyem metoda regulyarizatsii A. N. Tikhonova [Regional analytical modeling and identification of heat fluxes using the A. N. Tikhonov regularization method]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 2, no. 1–2, pp. 34–42 (in Russian).
Matsevityy, Yu. M., Safonov, N. A., & Ganchin, V. V. (2016). K resheniyu nelineynykh obratnykh granichnykh zadach teploprovodnosti [On the solution of nonlinear inverse boundary value problems of heat conduction]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 19, no. 1, pp. 28–36 (in Russian). https://doi.org/10.15407/pmach2016.01.028
Graham, N. Y. (1983). Smoothing with Periodic Cubic Splines. Bell System Techn. J., vol. 62, pp. 101–110. https://doi.org/10.1002/j.1538-7305.1983.tb04381.x
Reinsch, C. H. J. (1967). Smoothing by Spline Function. Numerische Mathematik, vol. 10, pp. 77–183. https://doi.org/10.1007/BF02162161
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2019 Yurii M. Matsevytyi, Volodymyr M. Sirenko, Andrii O. Kostikov, Mykola O. Safonov, Valerii V. Hanchyn
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).