Розв'язання нестаціонарних обернених задач теплопровідності для багатошарових тіл на основі ефективного пошуку регуляризуючого параметра

Автор(и)

  • Yurii M. Matsevytyi Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-6127-0341
  • Volodymyr M. Sirenko Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна
  • Andrii O. Kostikov Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0001-6076-1942
  • Mykola O. Safonov Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-3951-4805
  • Valerii V. Hanchyn Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0001-9242-6460

Ключові слова:

обернена задача теплопровідності, тепловий потік, термічний контактний опір, метод регуляризації А. М. Тихонова, функціонал, стабілізатор, параметр регуляризації, ідентифікація, апроксимація, сплайн Шьонберга третього ступеня

Анотація

У статті для отримання стійкого розв'язання оберненої задачі теплопровідності (ОЗТ) застосовується метод регуляризації А. М. Тихонова з ефективним алгоритмом пошуку регуляризуючого параметра. Шукані тепловий потік на границі та термічний контактний опір за часовою координатою апроксимуються сплайнами Шьонберга третього ступеня. Як стабілізуючий функціонал використовується сума квадратів шуканої величини, її першої та другої похідних. Як об'єкт дослідження розглядаються багатошарові пластини або оболонки, до яких можна віднести і корпус твердопаливних ракетних двигунів. У першому наближенні задача розглядається в одновимірній нестаціонарній лінійній постановці. Співвідношення товщини оболонки до її радіуса будемо вважати таким, що в рівнянні теплопровідності кривизною оболонки можна знехтувати і розглядати її як плоску пластину. Таке припущення вибрано для спрощення викладення матеріалу і не обмежує застосовності викладеної методики в разі осьової симетрії оболонки, а також під час перекладу математичної моделі з прямокутної в циліндричну систему координат. Розглядаються три обернені задачі. У перших двох визначаються теплові потоки в складеному тілі з ідеальним і реальним тепловим контактом. У третій ОЗТ за реального теплового контакту визначається термічний контактний опір. Теплові потоки в багатошарових тілах розглядаються у вигляді лінійних комбінацій сплайнів Шьонберга третього ступеня з невідомими коефіцієнтами, які обчислюються шляхом розв’язання системи лінійних алгебраїчних рівнянь. Ця система є наслідком необхідної умови мінімуму функціонала, в основу якого покладено принцип найменших квадратів відхилення модельованої температури від температури, отриманої в результаті теплофізичного експерименту. Для регуляризації розв’язків ОЗТ використовується стабілізуючий функціонал з параметром регуляризації як мультиплікативним множником. Він являє собою суму квадратів теплових потоків, їх перших і других похідних з відповідними множниками. Ці множники вибираються згідно із заздалегідь відомими властивостями шуканого розв’язку. Пошук регуляризуючого параметра здійснюється за допомогою алгоритму, аналогічного алгоритму пошуку кореня нелінійного рівняння.

Біографії авторів

Yurii M. Matsevytyi, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Академік НАН України

Volodymyr M. Sirenko, Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Кандидат технічних наук

Andrii O. Kostikov, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

член-кореспондент НАН України

Mykola O. Safonov, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Кандидат фіз.-мат. наук

Посилання

Beck, J., Blakuell, B., & Sent-Kler, Ch.Jnr. (1989). Nekorrektnyye obratnyye zadachi teploprovodnosti [Ill-conditioned inverse heat conduction problems].Moscow: Mir, 312 p. (in Russian).

Matsevityy, Yu. M. (2003). Obratnyye zadachi teploprovodnosti: v 2 t. T. 1. Metodologiya. T. 2. Prilozheniya [Inverse problems of heat conduction: in 2 vols. Vol. 1. Меtodologiya. Vol. 2. Applications]. Kiyev: Naukova dumka, 408 p. (vol. 1), 392 p. (vol. 2) (in Russian).

Kozdoba, L. A. & Krukovskiy, P. G. (1982). Metody resheniya obratnykh zadach teploperenosa [Methods for solving inverse heat transfer problems]. Kiyev: Naukova Dumka, 360 p. (in Russian).

Alifanov, O. M., Artyukhin, Ye. A., & Rumyantsev S. V. (1988). Ekstremalnyye metody resheniya nekorrektnykh zadach [Extreme methods for solving ill-conditioned problems]. Мoscow: Nauka, 288 p. (in Russian).

Tikhonov, A. N. & Arsenin, V. Ya. (1975). Metody resheniya nekorrektnykh zadach [Methods for solving ill-conditioned problems]. Moscow: Nauka, 288 p. (in Russian).

Matsevityy, Yu. M. & Slesarenko A. P. (2014). Nekorrektnyye mnogoparametricheskiye zadachi teploprovodnosti i regionalno-strukturnaya regulyarizatsiya ikh resheniy [Ill-conditioned multi-parameter heat conduction problems and regional-structural regularization of their solutions]. Kiyiv: Naukova dumka, 292 p. (in Russian).

Matsevityy, Yu. M., Slesarenko, A. P., & Ganchin, V. V. (1999). Regionalno-analiticheskoye modelirovaniye i identifikatsiya teplovykh potokov s ispolzovaniyem metoda regulyarizatsii A. N. Tikhonova [Regional analytical modeling and identification of heat fluxes using the A. N. Tikhonov regularization method]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 2, no. 1–2, pp. 34–42 (in Russian).

Matsevityy, Yu. M., Safonov, N. A., & Ganchin, V. V. (2016). K resheniyu nelineynykh obratnykh granichnykh zadach teploprovodnosti [On the solution of nonlinear inverse boundary value problems of heat conduction]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 19, no. 1, pp. 28–36 (in Russian). https://doi.org/10.15407/pmach2016.01.028

Graham, N. Y. (1983). Smoothing with Periodic Cubic Splines. Bell System Techn. J., vol. 62, pp. 101–110. https://doi.org/10.1002/j.1538-7305.1983.tb04381.x

Reinsch, C. H. J. (1967). Smoothing by Spline Function. Numerische Mathematik, vol. 10, pp. 77–183. https://doi.org/10.1007/BF02162161

Опубліковано

2019-09-24

Номер

Розділ

Аерогідродинаміки і тепломасообмін