Розв'язання нестаціонарних обернених задач теплопровідності для багатошарових тіл на основі ефективного пошуку регуляризуючого параметра
Ключові слова:
обернена задача теплопровідності, тепловий потік, термічний контактний опір, метод регуляризації А. М. Тихонова, функціонал, стабілізатор, параметр регуляризації, ідентифікація, апроксимація, сплайн Шьонберга третього ступеняАнотація
У статті для отримання стійкого розв'язання оберненої задачі теплопровідності (ОЗТ) застосовується метод регуляризації А. М. Тихонова з ефективним алгоритмом пошуку регуляризуючого параметра. Шукані тепловий потік на границі та термічний контактний опір за часовою координатою апроксимуються сплайнами Шьонберга третього ступеня. Як стабілізуючий функціонал використовується сума квадратів шуканої величини, її першої та другої похідних. Як об'єкт дослідження розглядаються багатошарові пластини або оболонки, до яких можна віднести і корпус твердопаливних ракетних двигунів. У першому наближенні задача розглядається в одновимірній нестаціонарній лінійній постановці. Співвідношення товщини оболонки до її радіуса будемо вважати таким, що в рівнянні теплопровідності кривизною оболонки можна знехтувати і розглядати її як плоску пластину. Таке припущення вибрано для спрощення викладення матеріалу і не обмежує застосовності викладеної методики в разі осьової симетрії оболонки, а також під час перекладу математичної моделі з прямокутної в циліндричну систему координат. Розглядаються три обернені задачі. У перших двох визначаються теплові потоки в складеному тілі з ідеальним і реальним тепловим контактом. У третій ОЗТ за реального теплового контакту визначається термічний контактний опір. Теплові потоки в багатошарових тілах розглядаються у вигляді лінійних комбінацій сплайнів Шьонберга третього ступеня з невідомими коефіцієнтами, які обчислюються шляхом розв’язання системи лінійних алгебраїчних рівнянь. Ця система є наслідком необхідної умови мінімуму функціонала, в основу якого покладено принцип найменших квадратів відхилення модельованої температури від температури, отриманої в результаті теплофізичного експерименту. Для регуляризації розв’язків ОЗТ використовується стабілізуючий функціонал з параметром регуляризації як мультиплікативним множником. Він являє собою суму квадратів теплових потоків, їх перших і других похідних з відповідними множниками. Ці множники вибираються згідно із заздалегідь відомими властивостями шуканого розв’язку. Пошук регуляризуючого параметра здійснюється за допомогою алгоритму, аналогічного алгоритму пошуку кореня нелінійного рівняння.Посилання
Beck, J., Blakuell, B., & Sent-Kler, Ch.Jnr. (1989). Nekorrektnyye obratnyye zadachi teploprovodnosti [Ill-conditioned inverse heat conduction problems].Moscow: Mir, 312 p. (in Russian).
Matsevityy, Yu. M. (2003). Obratnyye zadachi teploprovodnosti: v 2 t. T. 1. Metodologiya. T. 2. Prilozheniya [Inverse problems of heat conduction: in 2 vols. Vol. 1. Меtodologiya. Vol. 2. Applications]. Kiyev: Naukova dumka, 408 p. (vol. 1), 392 p. (vol. 2) (in Russian).
Kozdoba, L. A. & Krukovskiy, P. G. (1982). Metody resheniya obratnykh zadach teploperenosa [Methods for solving inverse heat transfer problems]. Kiyev: Naukova Dumka, 360 p. (in Russian).
Alifanov, O. M., Artyukhin, Ye. A., & Rumyantsev S. V. (1988). Ekstremalnyye metody resheniya nekorrektnykh zadach [Extreme methods for solving ill-conditioned problems]. Мoscow: Nauka, 288 p. (in Russian).
Tikhonov, A. N. & Arsenin, V. Ya. (1975). Metody resheniya nekorrektnykh zadach [Methods for solving ill-conditioned problems]. Moscow: Nauka, 288 p. (in Russian).
Matsevityy, Yu. M. & Slesarenko A. P. (2014). Nekorrektnyye mnogoparametricheskiye zadachi teploprovodnosti i regionalno-strukturnaya regulyarizatsiya ikh resheniy [Ill-conditioned multi-parameter heat conduction problems and regional-structural regularization of their solutions]. Kiyiv: Naukova dumka, 292 p. (in Russian).
Matsevityy, Yu. M., Slesarenko, A. P., & Ganchin, V. V. (1999). Regionalno-analiticheskoye modelirovaniye i identifikatsiya teplovykh potokov s ispolzovaniyem metoda regulyarizatsii A. N. Tikhonova [Regional analytical modeling and identification of heat fluxes using the A. N. Tikhonov regularization method]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 2, no. 1–2, pp. 34–42 (in Russian).
Matsevityy, Yu. M., Safonov, N. A., & Ganchin, V. V. (2016). K resheniyu nelineynykh obratnykh granichnykh zadach teploprovodnosti [On the solution of nonlinear inverse boundary value problems of heat conduction]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 19, no. 1, pp. 28–36 (in Russian). https://doi.org/10.15407/pmach2016.01.028
Graham, N. Y. (1983). Smoothing with Periodic Cubic Splines. Bell System Techn. J., vol. 62, pp. 101–110. https://doi.org/10.1002/j.1538-7305.1983.tb04381.x
Reinsch, C. H. J. (1967). Smoothing by Spline Function. Numerische Mathematik, vol. 10, pp. 77–183. https://doi.org/10.1007/BF02162161
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Yurii M. Matsevytyi, Volodymyr M. Sirenko, Andrii O. Kostikov, Mykola O. Safonov, Valerii V. Hanchyn
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.
Автори, які публікуються в цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи і передають журналу право першої публікації цієї роботи на умовах ліцензійного договору (угоди).
- Автори мають право самостійно укладати додаткові договори (угоди) з неексклюзивного поширення роботи в тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати в складі монографії), за умови збереження посилання на першу публікацію роботи в цьому журналі.
- Політика журналу дозволяє розміщення авторами в мережі Інтернет (наприклад, у сховищах установи або на персональних веб-сайтах) рукопису роботи як до подачі цього рукопису в редакцію, так і під час її редакційної обробки, оскільки це сприяє виникненню продуктивної наукової дискусії і позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).