R-functions in the Analytical Description of the Surface of a Flying Wing Unmanned Aerial Vehicle
Keywords:
unmanned aerial vehicle, R-functions, alphabetic parameters, standard primitivesAbstract
Unmanned aerial vehicles (UAVs) are becoming increasingly demanded worldwide. The scope of their use is very extensive. They are used for military purposes, delivery of goods, environmental monitoring, border patrolling, aerial reconnaissance and mapping, traffic control, etc. UAVs have a number of important advantages over manned aircraft. These advantages include relatively low costs of UAVs at their long flight durations and ranges, their low operating costs, and the ability to perform maneuvers with overloads that exceed the physical capabilities of a human being, making their development more active. One cannot imagine the designing of UAVs and control systems without mathematical modeling. To build mathematical models, high-speed computers and modern software tools have been created, Solid Works, Ansys CFX, POLYE software systems being among them. There arises a problem of specifying and quickly changing geometric information to create a mathematical and computer model of the UAV being designed. At the design stage, there can be solved a lot of tasks that are put before researchers as regards the use of UAVs. At the same time, insufficient attention is paid to the parametric representation of aircraft surfaces. Expanding the scope of using the apparatus of the theory of R-functions for modeling UAV surfaces is an urgent scientific and technical task. In this paper, for the first time, using the theory of R-functions, we build up the equation of the surface of a flying wing UAV in the form of a single analytical expression with alphabetic parameters. This equation can be used in solving various practical problems as well as developing and manufacturing the product itself, for example, on a 3D printer. The proposed method for specifying the shapes of products by using a limited number of parameters can significantly reduce the complexity of work in CAD systems in cases where it is required to view a large number of design options in search of an optimal solution. In this paper, we build a 14-parameter family of flying wing UAV surfaces. By changing the values of alphabetic parameters, we can quickly explore its various forms.References
Fedorov, S. I., Khaustov, A. V., Kramarenko, T. M., & Dolgikh, V. S. (2016). Klassifikatsiya BPLA i sistemy ikh intellektualnogo upravleniya [Classification of UAVs and their intelligent control systems]. Otkrytyye informatsionnyye i kompyuternyye integrirovannyye tekhnologii – Open Information and Computer Integrated Technologies, no. 74, pp. 12–21 (in Russian).
Austin, R. (2010). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. John Wiley and Sons, 332 p. https://doi.org/10.1002/9780470664797.
Arjomandi, M. (2006). Classification of Unmanned Aerial Vehicles. MECH ENG 3016. Aeronautical Engineering. TheUniversityofAdelaideAustralia, 49 p.
(2010). Unmanned Aircraft System Operation inUK. Airspace – Guidance: CAP 722. Civil Aviation Authority, 96 p.
Sheyko, T., Maksymenko-Sheyko, K., Sirenko, V., Morozova, A., & Petrova, R. (2019). Analytical identification of the unmanned aerial vehicles’ surfaces for the implementation at a 3D printer. Eastern-European Journal of Enterprise Technologies, vol. 1, no. 2 (97), pp. 48–56. https://doi.org/10.15587/1729-4061.2019.155548.
Rvachev, V. L. (1982). Teoriya R-funktsiy i nekotoryye yeye prilozheniya [R-functions theory and some of its applications]. Kiyev: Naukova dumka, 552 p. (in Russian).
Rvachev, V. L. & Sheiko, T. I. (1995). R-functions in boundary value problems in mechanics. Applied Mechanics Reviews, vol. 48, no. 4, pp. 151–188. https://doi.org/10.1115/1.3005099.
Maksimenko-Sheyko, K. V. (2009). R-funktsii v matematicheskom modelirovanii geometricheskikh obyektov i fizicheskikh poley [R-functions in mathematical modeling of geometric objects and physical fields].Kharkov: IPMashNAN Ukrainy, 306 p. (in Russian).
Lisin, D. A., Maksimenko-Sheyko, K. V., Tolok, A. V., & Sheyko, T. I. (2011). R-funktsii v kompyuternom modelirovanii dizayna 3D-poverkhnosti avtomobilya [R-functions in computer simulation of the design of the 3D surface of a car]. Prikladnaya informatika − Journal of Applied Informatics, no. 6 (36), pp. 78−85 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Tetiana I. Sheiko, Kyrylo V. Maksymenko-Sheiko, Volodymyr M. Sirenko, Anna I. Morozova
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).