R-функції в аналітичному описанні поверхні безпілотного літального апарата, який виконано за схемою «літаюче крило»

Автор(и)

  • Tetiana I. Sheiko Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0003-3295-5998
  • Kyrylo V. Maksymenko-Sheiko Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Харківський національний університет імені В. Н. Каразіна (61000, Україна, м. Харків, майдан Свободи, 4), Україна https://orcid.org/0000-0002-7064-2442
  • Volodymyr M. Sirenko Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна
  • Anna I. Morozova Харківський національний університет радіоелектроніки (61166, Україна, м. Харків, пр. Науки, 14), Україна https://orcid.org/0000-0002-7082-4115

Ключові слова:

безпілотний літальний апарат, R-функції, буквені параметри, стандартні примітиви

Анотація

Безпілотні літальні апарати (БПЛА) стають все більш затребуваними в усьому світі. Область їх потенційного застосування досить велика. Вони використовуються в  військових цілях, при доставці вантажів, моніторингу навколишнього середовища, патрулюванні кордонів, повітряній розвідці і картографуванні, контролі дорожнього руху та ін. Ряд важливих переваг БПЛА перед пілотованою авіацією привів до більш активного розвитку цієї галузі, серед яких відносно невелика вартість при великій тривалості і дальності польоту, малі витрати на їх експлуатацію, можливість виконувати маневри з перевантаженнями, що перевищують фізичні можливості людини. Проектування БПЛА і системи керування неможливо уявити без математичного моделювання БПЛА. Для побудови математичних моделей створено швидкодіючі ЕОМ і сучасні програмні засоби, наприклад, такі, як програмні комплекси Solid Works, Ansys CFX, POLYE і ін. Виникає проблема задання та оперативного змінювання геометричної інформації для створення математичної та комп'ютерної моделі проектованого БПЛА. На етапі проектування може бути вирішено багато завдань, які ставляться перед дослідниками при використанні БПЛА. При цьому параметричному заданню поверхонь літальних апаратів приділяється недостатньо уваги. Розширення сфери застосування апарату теорії R-функцій для моделювання поверхонь БПЛА є актуальною науково-технічною задачею. У даній роботі вперше, за допомогою теорії R-функцій, побудовано рівняння поверхні БПЛА, виконаного за схемою «літаюче крило» у вигляді єдиного аналітичного виразу з буквеними параметрами. Таке рівняння може бути використане як під час розв’язання різноманітних практичних задач, так і під час проектування та виготовлення самого виробу, наприклад, на 3D-принтері. Запропонований метод задання форми виробів за допомогою обмеженого числа параметрів може істотно скоротити трудомісткість робіт в CAD-системах в тих випадках, коли потрібно переглянути велику кількість варіантів конструкції в пошуках оптимального розв’язку. В роботі побудовано 14-параметрична сім’я поверхонь БПЛА, виконаних за схемою «літаюче крило». Змінюючи значення буквених параметрів, можна оперативно дослідити різні форми.

Біографії авторів

Tetiana I. Sheiko, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук

Kyrylo V. Maksymenko-Sheiko, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Харківський національний університет імені В. Н. Каразіна (61000, Україна, м. Харків, майдан Свободи, 4)

Доктор технічних наук

Volodymyr M. Sirenko, Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Кандидат технічних наук

Посилання

Fedorov, S. I., Khaustov, A. V., Kramarenko, T. M., & Dolgikh, V. S. (2016). Klassifikatsiya BPLA i sistemy ikh intellektualnogo upravleniya [Classification of UAVs and their intelligent control systems]. Otkrytyye informatsionnyye i kompyuternyye integrirovannyye tekhnologii – Open Information and Computer Integrated Technologies, no. 74, pp. 12–21 (in Russian).

Austin, R. (2010). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. John Wiley and Sons, 332 p. https://doi.org/10.1002/9780470664797.

Arjomandi, M. (2006). Classification of Unmanned Aerial Vehicles. MECH ENG 3016. Aeronautical Engineering. TheUniversityofAdelaideAustralia, 49 p.

(2010). Unmanned Aircraft System Operation inUK. Airspace – Guidance: CAP 722. Civil Aviation Authority, 96 p.

Sheyko, T., Maksymenko-Sheyko, K., Sirenko, V., Morozova, A., & Petrova, R. (2019). Analytical identification of the unmanned aerial vehicles’ surfaces for the implementation at a 3D printer. Eastern-European Journal of Enterprise Technologies, vol. 1, no. 2 (97), pp. 48–56. https://doi.org/10.15587/1729-4061.2019.155548.

Rvachev, V. L. (1982). Teoriya R-funktsiy i nekotoryye yeye prilozheniya [R-functions theory and some of its applications]. Kiyev: Naukova dumka, 552 p. (in Russian).

Rvachev, V. L. & Sheiko, T. I. (1995). R-functions in boundary value problems in mechanics. Applied Mechanics Reviews, vol. 48, no. 4, pp. 151–188. https://doi.org/10.1115/1.3005099.

Maksimenko-Sheyko, K. V. (2009). R-funktsii v matematicheskom modelirovanii geometricheskikh obyektov i fizicheskikh poley [R-functions in mathematical modeling of geometric objects and physical fields].Kharkov: IPMashNAN Ukrainy, 306 p. (in Russian).

Lisin, D. A., Maksimenko-Sheyko, K. V., Tolok, A. V., & Sheyko, T. I. (2011). R-funktsii v kompyuternom modelirovanii dizayna 3D-poverkhnosti avtomobilya [R-functions in computer simulation of the design of the 3D surface of a car]. Prikladnaya informatika − Journal of Applied Informatics, no. 6 (36), pp. 78−85 (in Russian).

Опубліковано

2019-12-22

Номер

Розділ

Прикладна математика