Bending of Plates with Complex Shape Made from Materials that Differently Resist to Tension and Compression
Abstract
A new numerical-analytical method for solving physically nonlinear bending problems of thin plates with complex shape made from materials that differently resist to tension and compression is developed. The uninterrupted parameter continuation method is used to formulate and linearize the problem of physically nonlinear bending. For the linearized problem, a functional in the Lagrange form, given on the kinematically possible displacement rates, is constructed. The main unknown problems (displacements, strains, stresses) were found from the solution of the initial problem, which was solved by the Runge-Kutta-Merson method with automatic step selection, by the parameter related to the load. The initial conditions are found from the solution of the problem of linear elastic deformation. The right-hand sides of the differential equations at fixed values of the load parameter corresponding to the Runge-Kutta-Merson scheme are found from the solution of the variational problem for the functional in the Lagrange form. Variational problems are solved using the Ritz method in combination with the R-function method, which allows to submit an approximate solution in the form of a formula – a solution structure that exactly satisfies the boundary conditions and is invariant with respect to the shape of the domain where the approximate solution is sought. The test problem for the nonlinear elastic bending of a square hinged plate is solved. Satisfactory agreement with the three-dimensional solution is obtained. The bending problem of the plate of complex shape with combined fixation conditions is solved. The influence of the geometric shape and fixation conditions on the stress-strain state is studied. It is shown that failure to take into account the different behavior of the material under tensile and compression can lead to significant errors in the calculations of the stress-strain state parameters.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 C. М. Склепус
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).