Study of the Stability of the Mathematical Model of the Coupled Pendulums Motion
Abstract
The paper presents a study of the dynamics of the oscillatory dissipative system of two elastically connected pendulums in a magnetic field. Nonlinear normal vibration modes of the pendulum system are studied in the paper taking into account the resistance of the medium, and the damping moment created by the elastic element. A system with two degrees of freedom is considered. The masses of the pendulums in that system differ significantly, which leads to the possibility of localization of oscillations. In the following analysis, the mass ratio was chosen as a small parameter. For approximate calculations of magnetic forces, the Padé approximation, which satisfies the experimental data the most, is used. This approximation provides a very accurate description of magnetic excitation. The presence of external influences in the form of magnetic forces and various types of loads that exist in many engineering systems leads to a significant complication in the analysis of vibration modes of nonlinear systems. A study of nonlinear normal vibration modes in this system was carried out, one of the modes is a connected mode, and the second one is localized. Vibration modes are constructed by the multiples scales method. Both regular and complex behavior is studied when changing system parameters. The influence of these parameters is studied for small and significant initial angles of the pendulum inclination. An analytical solution, which is based on the fourth-order Runge-Kutta method, is compared to numerical simulation results. The initial conditions for calculating the vibration modes were determined by the analytical solution. Numerical simulation, which consists of constructing phase diagrams, trajectories in the configuration space and spectra, allows to estimate the dynamics of the system, which can be both regular and complex. The stability of vibration modes is studied using numerical analysis tests, which are an implementation of the Lyapunov stability criterion. The stability of vibration modes is determined by the estimation of orthogonal deviations of corresponding trajectories of vibration modes in configuration space.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ю. Е. Сурганова, Ю. В. Міхлін

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).