Nonlinear Deformation of Cylinders from Materials with Different Behavior in Tension and Compression
Abstract
A new numerical-analytical method for solving physically nonlinear deformation problems of axisymmetrically loaded cylinders made of materials with different behavior in tension and compression has been developed. To linearize the problem, the uninterrupted parameter continuation method was used. For the variational formulation of the linearized problem, a functional in the Lagrange form, defined on the kinematically possible displacement rates, is constructed. To find the main unknowns of the problem of physically nonlinear cylinder deformation, the Cauchy problem for the system of ordinary differential equations is formulated. The Cauchy problem was solved by the Runge-Kutta-Merson method with automatic step selection. The initial conditions were established by solving the problem of linear elastic deformation. The right-hand sides of the differential equations at fixed values of the load parameter corresponding to the Runge-Kutta-Merson’s scheme are found from the solution of the variational problem for the functional in the Lagrange form. Variational problems are solved using the Ritz method. The test problem for the nonlinear elastic deformation of a thin cylindrical shell is solved. Coincidence of the spatial solution with the shell solution was obtained. Physically nonlinear deformation of a thick-walled cylinder was studied. It is shown that failure to take into account the different behavior of the material under tension and compression leads to significant errors in the calculations of stress-strain state parameters.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 О. З. Галішин, C. М. Склепус
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).