Дискретизація тонкостінних перерізів зі змінною товщиною стінки
Аннотация
На етапі проєктування тонкостінних авіаційних конструкцій для спрощення розрахунків їх поперечні перерізи піддають ідеалізації. Для цього переріз з обшивкою і поздовжніми елементами, що підкріплюють її, замінюють дискретним, що складається із зосереджених площ у характерних точках. При цьому зберігається рівність моментів інерції вихідного й дискретного перерізів. Така ідеалізація використовується при розрахунку тонкостінних стрижнів на нормальні й дотичні напруження (модель Вагнера). Для перерізів, що складаються з системи прямокутних смужок постійної товщини, дискретизація дозволяє встановлювати наближені значення нормальних і дотичних напружень і точно визначати місцезнаходження особливих точок центру згинання (у відкритому контурі) і центру жорсткості (у закритому). Дискретна модель смужки складається з трьох зосереджених площ: двох на краях і однієї в центрі. У роботі запропоновано розширити дискретну модель на перерізи, в яких товщина обшивки за контуром змінюється за лінійним законом. Зауважено, що на додаток до прямокутної смужки можна використовувати витягнуті трикутники і трапеції, які замінюються трьома й чотирма зосередженими площами відповідно. Розглянуто можливість застосування дискретної моделі для розрахунку деяких тонкостінних перерізів відкритого й закритого контурів. Досліджено переріз відкритого контуру – задача про поперечне згинання без кручення швелера, що має полиці з лінійно змінюваною товщиною. Показані відмінності в потоках дотичних сил, підрахованих за точною й дискретною моделями. Встановлено збіг результатів щодо положення центру згинання за двома моделям. При вивченні застосування дискретної моделі до замкнутого контуру запропоновано спрощений варіант. Розглядалася задача про поперечне згинання без кручення і пошуку центру жорсткості в перерізі з контурною лінією у вигляді трапеції з передньою й задньою стінками постійної товщини та верхньою й нижньою обшивками змінної товщини за контуром, а також в аналогічному перерізі з контурною лінією у вигляді прямокутника. Встановлено відмінності в потоках дотичних сил, підрахованих за точними й дискретними моделями. Для замкнутого перерізу у вигляді прямокутника окремо досліджено зниження моменту інерції на кручення від перерозподілу матеріалу у поперечному перерізі. З’ясовано, що при знаходженні положення центру жорсткості розходження в результатах точної і дискретної моделей склало в перерізах з геометричними параметрами, близькими до реальних, для прямокутного контуру менше 1%, а для трапецієподібного – 4%. Результати свідчать про можливість розширення застосування дискретної моделі тонкостінного поперечного перерізу на проєктувальні розрахунки тонкостінних стрижнів зі змінною товщиною обшивки, що представляють практичні конструкції.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2024 М. М. Гребенніков, О. Г. Дібір, А. О. Кирпікін
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).