Аналіз напруженого стану шару з двома циліндричними врізаними опорами
Анотація
Досліджується напружений стан однорідного ізотропного шару при дії просторового статичного зовнішнього навантаження. Дві кругові циліндричні опори врізані в тіло шару паралельно його межам. Опори та тіло шару жорстко спряжені між собою. Просторова задача теорії пружності розв’язується за допомогою аналітико-чисельного узагальненого методу Фур’є. Шар розглядається в декартовій системі координат, опори – у локальних циліндричних. На верхній та нижній поверхнях шару задані напруження. Опори розглядаються у вигляді циліндричних порожнин у шарі із заданими на їх поверхнях нульовими переміщеннями. Задовольняючи граничним умовам на верхній і нижній поверхнях шару, а також на циліндричних поверхнях порожнин, отримано системи нескінченних інтегро-алгебраїчних рівнянь, які в подальшому зведені до лінійних алгебраїчних. Нескінченна система розв’язується методом редукції. У чисельних дослідженнях проаналізовано параметри інтегрування коливних функцій, розв’язані задачі при різних відстанях між опорами. Одиничне навантаження у вигляді швидко спадаючої функції прикладено на верхній межі між опорами. Для цих випадків проведено аналіз напруженого стану на поверхнях шару між опорами та на циліндричних поверхнях, що контактують з опорами. Чисельний аналіз показав, що при збільшенні відстані між опорами зростають напруження σx на нижній та верхній поверхнях шару й напруження τρφ на поверхнях порожнин. Використання аналітико-чисельного методу дало можливість отримати результат із точністю 10-4 для значень напружень від 0 до 1 при порядку системи рівнянь m=6. При збільшенні порядку системи точність виконання граничних умов зростатиме. Представлене аналітико-чисельне розв’язання може використовуватися для високоточного визначення напружено-деформованого стану представленого типу задач, а також як еталонне для задач, що базуються на чисельних методах.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2023 В. Ю. Мірошніков, О. Б. Савін, М. М. Гребенніков, В. Ф. Деменко
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.
Автори, які публікуються в цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи і передають журналу право першої публікації цієї роботи на умовах ліцензійного договору (угоди).
- Автори мають право самостійно укладати додаткові договори (угоди) з неексклюзивного поширення роботи в тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати в складі монографії), за умови збереження посилання на першу публікацію роботи в цьому журналі.
- Політика журналу дозволяє розміщення авторами в мережі Інтернет (наприклад, у сховищах установи або на персональних веб-сайтах) рукопису роботи як до подачі цього рукопису в редакцію, так і під час її редакційної обробки, оскільки це сприяє виникненню продуктивної наукової дискусії і позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).