USING ARTIFICIAL INTELLIGENCE METHODS IN TASKS OF DECENTRALIZED CONTROL OF A GROUP OF UNMANNED AERIAL VEHICLES

Authors

DOI:

https://doi.org/10.63978/3083-6476.2025.2.2.06

Keywords:

agent, artificial intelligence, decentralized management, Python programming language, unmanned aerial vehicle

Abstract

For solving tasks dangerous to humans, a group of unmanned aerial vehicles (UAVs) has advantages over a single device. The greatest result is the implementation of decentralized control of a group of UAVs. The work considers the problem of decentralized control of a group of UAVs for the effective solution of strategically important tasks in conditions of uncontrolled situations using swarm intelligence methods. The work presents a structural diagram and implements a method of decentralized control of a group of UAVs. Practical results - modeling the behavior of drones in a group.

Author Biographies

Oleh Zolotukhin, Kharkiv National University of Radio Electronics

PhD in Engineering, Associate Professor of Department Dean of Computer Science Faculty,

Head of  Artificial Intelligence Department

Valentin Filatov, Kharkiv National University of Radio Electronics

Doctor of Engineering Science, Professor

Maryna Kudryavtseva, Kharkiv National University of Radio Electronics

PhD in Engineering, Associate Professor of Department

References

Austin R. Unmanned Aircraft Systems: UAVs Design, Development and Deployment. Chichester : Wiley, 2010. 372 p.

Valavanis K. P., Vachtsevanos G. J. Handbook of Unmanned Aerial Vehicles. Dordrecht : Springer, 2015. 3020 p.

Bonabeau E., Dorigo M., Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York : Oxford University Press, 1999. 320 p.

Bekmezci I., Sahingoz O., Temel Ş. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks. 2013. Vol. 11. № 3. P. 1254–1270. URL: https://doi.org/10.1016/j.adhoc.2012.12.004.

Lewis F., Vrabie D., Syrmos V. Optimal Control. Chichester : Wiley, 2012. 552 p.

Anderson BDO, Moore JB Optimal Control: Linear Quadratic Methods. Mineola : Dover, 2007. 352 p.

Åström K., Wittenmark B. Adaptive Control. 2nd ed. Mineola : Dover, 2013. 576 p.

Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA : MIT Press, 2018. 552 p.

Bertsekas D. P. Dynamic Programming and Optimal Control. Belmont, MA. Athena Scientific. 2017. Vol. 1-2. 1366 p.

Michael N., Fink J., Kumar V. Cooperative manipulation and transportation with aerial robots. Autonomous Robots. 2008. Vol. 30. № 1. P. 73–86. URL: https://doi.org/10.1007/s10514-010-9201-3.

Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control. 2006. Vol. 51. № 3. P. 401–420. URL: https://doi.org/10.1109/TAC.2005.864190.

Hendrickx JM, Tsitsiklis JN Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Transactions on Automatic Control. 2013. Vol. 58. № 1. P. 214–218.

Ren W., Beard R. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London : Springer, 2008. 316 p.

Jadbabaie A., Lin J., Morse A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control. 2003. Vol. 48. № 6. P. 988–1001.

Ren W., Beard R., Atkins E. A survey of consensus problems in multi-agent coordination. Proceedings of the American Control Conference. 2005. P. 1859–1864.

Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control. 2005. Vol. 50. № 2. P. 169–182.

Tanner H., Jadbabaie A., Pappas G. Stable flocking of mobile agents. Part I: Fixed topology. Proceedings of the 42nd IEEE Conference on Decision and Control. 2003. P. 2010–2015. URL: https://doi.org/10.1109/CDC.2003.1272910.

Fax J. A., Murray R. M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control. 2004. Vol. 49. № 9. P. 1465–1476.

Dimarogonas D. V., Kyriakopoulos K. J. Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Transactions on Robotics. 2008. Vol. 24. № 5. P. 1213–1223.

Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. 1995. P. 1942–1948.

Dorigo M., Stützle T. Ant Colony Optimization. Cambridge, MA : MIT Press, 2004. 328 p.

Karaboga D., Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization. 2007. Vol. 39. № 3. P. 459–471. URL: https://doi.org/10.1007/s10898-007-9149-x.

Filatov V., Yerokhin A., Zolotukhin O., Kudryavtseva M. The Information Space Model in the Tasks of Distributed Mobile Objects Managing. Information Extraction and Processing. 2019. № 47 (123). P. 80-86. URL: https://doi.org/10.15407/vidbir2019.47.080.

Downloads

Published

2025-09-15

Issue

Section

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ