USING ARTIFICIAL INTELLIGENCE METHODS IN TASKS OF DECENTRALIZED CONTROL OF A GROUP OF UNMANNED AERIAL VEHICLES
DOI:
https://doi.org/10.63978/3083-6476.2025.2.2.06Keywords:
agent, artificial intelligence, decentralized management, Python programming language, unmanned aerial vehicleAbstract
For solving tasks dangerous to humans, a group of unmanned aerial vehicles (UAVs) has advantages over a single device. The greatest result is the implementation of decentralized control of a group of UAVs. The work considers the problem of decentralized control of a group of UAVs for the effective solution of strategically important tasks in conditions of uncontrolled situations using swarm intelligence methods. The work presents a structural diagram and implements a method of decentralized control of a group of UAVs. Practical results - modeling the behavior of drones in a group.
References
Austin R. Unmanned Aircraft Systems: UAVs Design, Development and Deployment. Chichester : Wiley, 2010. 372 p.
Valavanis K. P., Vachtsevanos G. J. Handbook of Unmanned Aerial Vehicles. Dordrecht : Springer, 2015. 3020 p.
Bonabeau E., Dorigo M., Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York : Oxford University Press, 1999. 320 p.
Bekmezci I., Sahingoz O., Temel Ş. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks. 2013. Vol. 11. № 3. P. 1254–1270. URL: https://doi.org/10.1016/j.adhoc.2012.12.004.
Lewis F., Vrabie D., Syrmos V. Optimal Control. Chichester : Wiley, 2012. 552 p.
Anderson BDO, Moore JB Optimal Control: Linear Quadratic Methods. Mineola : Dover, 2007. 352 p.
Åström K., Wittenmark B. Adaptive Control. 2nd ed. Mineola : Dover, 2013. 576 p.
Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA : MIT Press, 2018. 552 p.
Bertsekas D. P. Dynamic Programming and Optimal Control. Belmont, MA. Athena Scientific. 2017. Vol. 1-2. 1366 p.
Michael N., Fink J., Kumar V. Cooperative manipulation and transportation with aerial robots. Autonomous Robots. 2008. Vol. 30. № 1. P. 73–86. URL: https://doi.org/10.1007/s10514-010-9201-3.
Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control. 2006. Vol. 51. № 3. P. 401–420. URL: https://doi.org/10.1109/TAC.2005.864190.
Hendrickx JM, Tsitsiklis JN Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Transactions on Automatic Control. 2013. Vol. 58. № 1. P. 214–218.
Ren W., Beard R. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London : Springer, 2008. 316 p.
Jadbabaie A., Lin J., Morse A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control. 2003. Vol. 48. № 6. P. 988–1001.
Ren W., Beard R., Atkins E. A survey of consensus problems in multi-agent coordination. Proceedings of the American Control Conference. 2005. P. 1859–1864.
Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control. 2005. Vol. 50. № 2. P. 169–182.
Tanner H., Jadbabaie A., Pappas G. Stable flocking of mobile agents. Part I: Fixed topology. Proceedings of the 42nd IEEE Conference on Decision and Control. 2003. P. 2010–2015. URL: https://doi.org/10.1109/CDC.2003.1272910.
Fax J. A., Murray R. M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control. 2004. Vol. 49. № 9. P. 1465–1476.
Dimarogonas D. V., Kyriakopoulos K. J. Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Transactions on Robotics. 2008. Vol. 24. № 5. P. 1213–1223.
Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. 1995. P. 1942–1948.
Dorigo M., Stützle T. Ant Colony Optimization. Cambridge, MA : MIT Press, 2004. 328 p.
Karaboga D., Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization. 2007. Vol. 39. № 3. P. 459–471. URL: https://doi.org/10.1007/s10898-007-9149-x.
Filatov V., Yerokhin A., Zolotukhin O., Kudryavtseva M. The Information Space Model in the Tasks of Distributed Mobile Objects Managing. Information Extraction and Processing. 2019. № 47 (123). P. 80-86. URL: https://doi.org/10.15407/vidbir2019.47.080.