SPECTRAL ANALYSIS AS A VECTOR FOR THE DEVELOPMENT OF CHEMICAL RECONNAISSANCE DEVICES

Authors

DOI:

https://doi.org/10.63978/3083-6476.2025.3.3.07

Keywords:

CBRN threats, long-range standoff CBR reconnaissance devices, chemical weapon agents, spectral analysis

Abstract

Due to the acute toxicity and extreme lethality, yet the non-selective type of activity of CWA’s (chemical weapon agents) toward military targets and the civilian population, timely detection and identification of CWA’s is becoming an important element of modern war conflicts. Spectral analysis is employed in nowadays for the engineering of accurate and selective detection of chemical warfare weapons. An analysis of current trends in the development of remote sensing of CWA’s shows the NATO member states and the russian federation have already mastered and are continuing enhancement and modernization of the latest technologies for the development of weapons based on the laser radiation differential absorption spectroscopy (differential absorption LIDARS), Fouriertransformed infrared (FT-IR) spectroscopy for the detection, identification, determination of concentration ranges for revealed CWA contaminated areas, linking them to corresponding geospatial data. The mentioned type of devices is capable of discrimination of main groups of CWA’s like nerve gases, blister substances, explosives as well as industrial toxic compounds at a range of as far as 6 km. The rich possibilities for detection of various industrial toxic substances using long-range stand-off chemical reconnaissance would contribute to increasing the situational awareness of the Armed Forces of Ukraine units that perform combat (special) missions in the territories, where the main chemical industry objects of Ukraine are located. The effective counteraction to recent potential chemical threats depends on the accelerated research and development of the grounds of advanced analytical methods for detecting CWA’s, as well as the settling and development of cooperation with international professional partner organizations would significantly advance the capabilities of the design, scale up the production, move forward the enhancement and modernization of up-to-date chemical reconnaissance equipment.

References

Koblentz G. D. Chemical-weapon use in Syria: atrocities, attribution, and accountability. The Nonproliferation Reviews. 2016. Vol. 26. № 5–6. P. 575–598. URL: https://doi.org/10.1080/10736700.2019.1718336.

Report of the fact-finding mission regarding the incident of alleged use of toxic chemicals as a weapon in Douma, Syrian Arab republic, on 7 April 2018, OPCW Tech. Secretariat, The Hague, The Netherlands, Tech. Rep. S/1731/2019, Mar. 2019. URL: https://reliefweb.int/report/syrian-arab-republic/note-technicalsecretariat-report-fact-finding-mission-regarding.

Kuca K., Nepovimova E. Are we facing NOVICHOK nerve agent threat? Australasian Medical Journal. 2019. Vol. 12. № 2. P. 49–52. URL: https://doi.org/10.21767/AMJ.2018.3482.

Veerabuthiran S., Razdan, A. LIDAR for detection of chemical and biological warfare agents. Defence Science Journal. 2011. Vol. 61. № 3. P. 241–250. URL: https://doi.org/10.14429/dsj.61.556.

Robinson R., Gardiner T., Innocenti F., Woods P., Coleman M., Infrared differential absorption lidar (DIAL) measurements of hydro-carbon emissions. Journal of Environmental Monitoring. 2011. Vol. 13. № 8. P. 2213. URL: https://doi.org/10.1039/C0EM00312C.

Innocenti F., Robinson R., Gardiner T., Finlayson A., Connor A., Differential absorption lidar (DIAL) measurements of landfill methane emissions. Remote Sensing. 2017. Vol. 9. № 9. P. 953. URL: https://doi.org/10.3390/rs9090953.

Milton M. J. T., Woods P. T., Jolliffe B. W., Swann N. R. W., McIlveen T. J. Measurements of toluene and other aromatic hydrocarbons by differential-absorption LIDAR in the near-ultraviolet. Applied Physics B. 1992. Vol. 55. № 1. P. 41–45. URL: https://doi.org/10.1007/BF00348611.

Webber M. E., Pushkarsky M., Patel C. K. N. Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. Journal of Applied Physics. 2005. Vol. 97. № 11. Art. No. 113101. URL: https://doi.org/10.1063/1.1900931.

Carlisle C. B., Van der Laan J. E., Carr L. W., Adam P., Chiaroni J. P., CO2 laser-based differential absorption lidar system for range resolved and long range detection of chemical vapor plumes. Applied Optics. 1995. Vol. 34. P. 6187–6201. URL: https://doi.org/10.1364/AO.34.006187.

Geiko P. P., A. Tikhomirov. Remote measurement of chemical warfare agents by differential absorption CO2 lidar. Optical Memory and Neural Networks. 2011. Vol. 20. № 1. P. 71–75. https://doi.org/10.3103/S1060992X11010012.

D. F. Flanigan. Short history of remote sensing of chemical agents. Electro-Optical Technology for Remote Chemical Detection and Identification. 1996. Vol. 2763. P. 2–17. URL: https://doi.org/10.1117/12.243282.

Leonard D. A., Driscoll T. A., Sweeney H. E. Detection of organophosphate vapors and liquids using a CO2 lidar. Optical Instruments for Weather Forecasting. 1996. Vol. 2832. P. 20–31. URL: https://doi.org/10.1117/12.258883.

Our Technologies. Accessed: Dec. 08, 2025 URL: https://www.sec-technologies.com/technology (дата звернення: 10.12.2025).

Van der Meer M. J. A., Nieuwenhuizen M. S. Observer report about field tests with a FALCON 4G standoff detector by SEC Technologie. Rijswijk, The Netherlands: TNO, 2016. URL: https://resolver.tno.nl/uuid:605cde95-7f91-4af8-8868-f45996b132e4.

“Інструкція функціонування системи попередження й оповіщення про хімічну, біологічну, радіологічну та ядерну загрозу (інцидент) у системі Міністерства оборони України” : наказ Міністерства оборони України від 22.03.2023 № 152/нм. Київ, 2023. 43 с.

Rehušová S. Falcon 4G demo at noble innovation day 2024. SEC Technologies. URL: https://www.sectechnologies.com/media/downloads/SEC_Technologies_Report_USA2024.pdf (дата звернення 10.12.2025).

Голяк Иг. С., Голяк Ил. С., Карфидов А. О., Королёв П. А., Морозов А. Н., Миронов А. И., Строков М. А., Табалин С. Е., Фуфурин И. Л., Панорамный фурье-спектрорадиометр ПХРДД-4. Приборы и техника эксперимента. 2014. № 6. С. 119–120.

Петухов А. Н., Вильчик В. В., Шустикова Т. В., Имамов Д. М., Молчанов М. С. История развития отечественних средств химической разведки. Весник войск РХБ защиты. 2024. Т. 8. № 1. С. 78-100.

Published

2025-12-16

Issue

Section

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ