Morpho-physiological adaptation of bryophytes to environmental factors on the devastated territories of sulphur extraction

Authors

  • Natalia Kyyak Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026, Ukraine https://orcid.org/0000-0001-8965-9060
  • Oksana Baik Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026, Ukraine
  • Nadiya Kit Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2017.113540

Keywords:

structure of sods, general content of carbohydrates, starch, soluble sugars, peroxidase, superoxide dismutase, DNA luminescence, mosses

Abstract

There was studied the morphological structure of mossy sods, content of carbohydrate metabolism components; activity of enzymes of antioxidant defense – peroxidase and superoxide dismutase in mosses with different tolerance to the moisture deficiency– Bryum argenteum Hedw., Bryum caespiticium Hedw. and Brachytecium salebrosum (Hoffm. ex F. Weber & D. Mohr) Schimp., and also the functional condition of DNA depending on the intensity of ecological factors at the territory of sulphur excavation dump of Novoyavorivsky state mining-chemical enterprise “Sirka” (Lviv region, Ukraine), where bryophytes are pioneers of overgrowth.

It was demonstrated, that under unfavorable hydrothermal regime, sods of mosses Bryum argenteum and Brachythecium salebrosum acquired signs of xeromorphism that is a manifestation of adaptation to the moisture deficiency. The mosses adaptation to the unfavorable water regime at the territory of the sulphur excavation dump is provided by the change of directionality of carbohydrate metabolism, manifested in the increase of the general content of carbohydrates and redistribution of carbohydrate metabolism to starch hydrolysis and soluble sugars accumulation.

There was established the increase of activity of enzumes-antioxidants - peroxidase and supersoxide dismutase - in mosses shoots.

The moderate water deficiency influenced the intensity of luminescence of DNA ∙АО of kernels, causing the increase of the level of polyploidization of kernels of the apical meristem of B. Caespiticium shoots

Author Biographies

Natalia Kyyak, Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026

PhD, Senior Researcher

Department of Plant Ecomorphogenesis

Oksana Baik, Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026

PhD, Senior Researcher

Department of Plant Ecomorphogenesis

Nadiya Kit, Institute of Ecology of the Carpathians National Academy of Sciences of Ukraine Kozelnitska str., 4, Lviv, Ukraine, 79026

Junior Researcher

Department of Plant Ecomorphogenesis

References

  1. Proctor, M. C. F., Oliver, M. J., Wood, A. J., Alpert, P. R., Stark, L., Cleavitt, N. L. et. al. (2007) Desiccation-tolerance in bryophytes: A review. Bryologist, 110 (4), 595–621. doi: 10.1639/0007-2745(2007)110[595:dibar]2.0.co;2
  2. Jovtchev, G., Barow, M., Meister, A., Schubert, I. (2007). Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environmental and Experimental Botany, 60 (3), 404–411. doi: 10.1016/j.envexpbot.2006.12.007
  3. Mineev, V. G. (1989). Praktikum po agrohimii [Workshop on agrochemistry]. Moscow: Publishing House MGU, 304.
  4. Ermakov, A. I. (Ed.) (1987). Metody biohimicheskogo issledovaniya rasteniy [Methods of biochemical research of plants]. Leningrad: Agropromizdat, 325.
  5. Chevari, S., Andyal, G., Shtrenger, Ya. (1991). Opredelenie antioksidantnyh parametrov krovi [Determination of antioxidant blood parameters]. Laboratory work, 10, 9–14.
  6. Rigler, R. Jr. (1966). Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol Scand Suppl, 267, 1–122.
  7. Plohinskiy, N. A. (1970). Biometriya [Biometrics]. Moscow: Publishing House MGU, 367.
  8. Goncharova, I. A. (2005). K voprosu o strukture dernoviny i produktivnosti sfagnovyih mhov na oligotrofnyh bolotah [About the structure of turf and productivity of sphagnum mosses on the oligotrophic bogs]. Siberian ecological journal, 1, 131–134.
  9. Glime, J. M. (2007). Bryophyte Ecology. Volume 1. Physiological Ecology : E-book sponsored by Michigan Technological University and the International Association of Bryologists, 395. Available at: http://www.bryoecol.mtu.edu/
  10. Alieva, D. R., Babaev, G. G., Azizov, I. V. (2010). Aktivnost i izofermentnyiy sostav peroksidazy kletok Dunaliella salina pri solevom stresse [Activity and isoenzymic composition of peroxidase of Dunaliella salina cells under salt stress]. Bulletin of Dnipropetrovsk University. Biology. Medicine, 1 (1), 16–21.
  11. Kolupayev, Yu. Ye., Oboznyj, O. I. (2013). Aktyvni formy kysnyu i antyoksydantna systema pry perehresnij adaptaciyi roslyn do diyi abiotychnyh stresoriv [Active forms of oxygen and antioxidant system at cross-adaptation of plants to the abiotic stressors influence]. Bulletin of Kharkiv National Agrarian University. Series: Biology, 3 (30), 18–31.
  12. Bainard, J. D., Henry, T. A., Bainard, L. D., Newmaster, S. G. (2011). DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Chromosome Research, 19 (6), 763–775. doi: 10.1007/s10577-011-9228-1

Published

2017-10-31

How to Cite

Kyyak, N., Baik, O., & Kit, N. (2017). Morpho-physiological adaptation of bryophytes to environmental factors on the devastated territories of sulphur extraction. ScienceRise: Biological Science, (5 (8), 33–38. https://doi.org/10.15587/2519-8025.2017.113540

Issue

Section

Biological Sciences