Determination of biochemical indicators of the functional state of livers of white rats for one-time internal intra-abdominal administration of the mixture of nanoparticles of metals (Ag, Cu, Fe, MnО2)

Authors

  • Marina Roman'ko National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” (NSC "IECVM") Pushkinska str., 83, Kharkiv, Ukraine, 61083, Ukraine https://orcid.org/0000-0003-0285-5603

DOI:

https://doi.org/10.15587/2519-8025.2017.119811

Keywords:

nanoparticles of metals, rats, toxicity, bio-compatibility, liver, peroxide oxidation of lipids, oxidative modification of proteins, enzymes

Abstract

There was established the hepatotoxic effect of the mixture of colloid dispersions of nanoparticles of metals (mixture NPMe: Ag, Cu, Fe, MnО2) compared with the mixture of salts of correspondent metals at the one-time intra-abdominal administration to white rats that has the expressed dose-depending effect. Mechanisms of the hepatotoxic effect of NPMe mixture is doses 1,0, 2,0 and 4,0 mg/kg of a body mass are in formation of the oxidation stress in an animal organism that is accompanied by the increase of enzyme activity of indicative AsAt and HGT and catalase, inhibition of AlAT, AP and general AOA (р≤0,05). The intensification of urea formation along with the increase of the glucose level (р≤0,05) in plasma of rats that received NPMe in increased doses indicates the evident intensification of processes of elimination of nanoparticles that is in the direct proportion to the time of admission and energetic supply of animals.

At the absence of prooxidant effect and regulation of indicators of AOS in rats’ organisms it was proved, that NPMe mixture in dose 0,3 mg/kg of a body mass is biocompatible and has the adaptogenic effect compared with salts of correspondent metals that colloid dispersions of nanoparticles of essential metals can be considered as a prospective substance of drugs and components of fodder additives

Author Biography

Marina Roman'ko, National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” (NSC "IECVM") Pushkinska str., 83, Kharkiv, Ukraine, 61083

PhD

Department of toxicology, safety and quality of agricultural products NSC "IECVM"

References

  1. Shpak, A. P., Chekhun, V. P. (Eds.) (2011). Nanomaterialy i nanokompozity v meditsine, biologii i ekologii [Nanomaterials and nanocomposites in medicine, biology and ecology]. Kyiv: Naukova dumka, 444.
  2. Stoika, R. S. (Ed.) (2017). Bahatofunktsionalni nanomaterialy dlia biolohiy i medytsyny: molekuliarnyi dyzain, syntez i zastosuvannia [Multifunctional nanomaterials for biology and medicine: molecular design, synthesis and application]. Kyiv: Naukova dumka, 361.
  3. Chekman, I. S., Ulberh, Z. R., Malanchuk, V. O., Horchakova, N. O., Zupanets, I. A. (2012). Nanonauka, nanobiolohiia, nanofarmatsiia [Nanosciences, nanobiology, nanopharmacy]. Kyiv: Polihraf plius, 327.
  4. Terry, R. N. (2003). Pat. No. 20040116551 A1 US. Antimicrobial compositions containing colloids of oligodynamic metals. IPC C08K 3/10, C08K 3/00. No. US10/649,595; declareted: 26.08.2003; published: 17.06.2004, 35. Available at: https://www.google.com/patents/US20040116551
  5. Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., Sastry, M. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 21 (23), 10644–10654. doi: 10.1021/la0513712
  6. Rieznichenko, L. S., Gruzina, T. G., Dybkova, S. N., Ulberg, Z. R., Roman’ko, M. E., Ushkalov, V. A., Chekman, I. S. (2011). Metal nanoparticles: synthesis, properties, and application in medicine and veterinary. Mediaterranean-East-Europe Meeting Multifunctional Nanomaterials: NanoEuroMed 2011. Uzhgorod, 60–61. Available at: http://www.nanoeuromed.ferroix.net/home/NanoeuroMed_Abstracts.pdf?attredirects=0&d=1
  7. Dybkova, S. M., Roman’ko, M. E., Rieznichenko, L. S., Gruzina, T. G., Ulberg, Z. R., Ushkalov, V. O., Kutsan, O. T. (2011). Otsinka henotoksychnosti ta mutahennosti nanochastynok metaliv, perspektyvnykh komponentiv veterynarnykh nanonutrytsevtykiv [Genotoxity and mutagenic assessment of metal nanoparticles, promising components of veterinary nanonutriceutics]. Veterynarna biotekhnolohiya, 19, 61–69.
  8. Golovko, A., Ushkalov, V., Reznichenko, L., Romanko, M., Gruzina, T., Dybkova, S., Ulberg, Z. (2011). Otsiniuvannia ta kontroliuvannia biolohichnoi bezpeky nanomaterialiv u veterynarniy medytsyni [Estimating and controlling biosafety of nano-materials in veterinary medicine]. Visnyk ahrarnoi nauky, 5, 24–28. Available at: http://agrovisnyk.org.ua/ua/old-archive/issue-5-2011
  9. Percov, A. V. (Ed.) (1976). Metodicheskie razrabotki k praktikumu po kolloidnoy himii [Methodical developments for the workshop on colloid chemistry]. Moscow: Izdatel’stvo Moskovskogo universiteta, 132.
  10. Zapadnyuk, I. P., Zapadnyuk, V. I., Zakhariya, E. A., Zapadnyuk, B. V. (1983). Laboratornye zhivotnye. Razvedenie, soderzhanie, ispol’zovanie v eksperimente [Laboratory animals. Breeding, keeping, use in experiment]. Kyiv: Vishcha shkola, 383.
  11. Kotsiumbas, I. Ya., Malyk, O. H., Patereha, I. P., Tishyn, O. L., Kosenko, Yu. M. (2005). Doklinichni doslidzhennia veterynarnykh likarskykh zasobiv [Preclinical testing of veterinary drugs]. Lviv: Triada plius, 360.
  12. Gavrilov, V. B., Mishkorudnaya, M. I. (1983). Spektrofotometricheskoe opredelenie soderzhaniya gidroperekisey lipidov v plazme krovi [Spectrophotometric assay of the blood plasma lipid hydroperoxides]. Laboratornoe delo, 3, 33–36.
  13. Archakov, A. I., Mikhosoev, I. M. (1998). Modifikatsiya belkov aktivnym kislorodom i ikh raspad [Modification of proteins by active oxygen and their degradation]. Biokhimiya, 54 (2), 179–186. Available at: https://elibrary.ru/item.asp?id=18235623
  14. Korolyuk, M. A., Ivanova, L. I., Maiorova, I. G., Tokarev V. E. (1988). Metod opredeleniya aktivnosti katalazy [A method for measuring catalase activity]. Laboratornoe delo, 1, 16–18.
  15. Klebanov, G. I., Babenkova, I. V., Teselkin, Yu. O., Komarov, O. S., Vladimirov, Yu. A. (1988). Otsenka antiokislitel’noy aktivnosti plazmy krovi s primeneniem zheltochnykh lipoproteidov [Assessing the blood plasma antioxidant activity using the yolk lipoproteins]. Laboratornoe delo, 5, 59–62.
  16. De Bono, D. P. (1994). Free radicals and antioxidants in vascular biology: the roles of reaction kinetics, environment and substrate turnover. QJM: An International Journal of Medicine, 87 (8), 445–453. doi: 10.1093/oxfordjournals.qjmed.a068954
  17. Starykovych, L. S., Datsyuk, L. A., Staranko, U. V., Klymyshyn, N. I., Trykulenko, A. V., Kleveta, G. Ya., Vytychak, M. Ye., Stoyka, R. S. (2008). Issledovanie prognosticheskoy roli aktivnosti enzimov antioksidantnoy zashchity v okislitel’noy modifikatsii belkov posle deystviya nizkointensivnogo ioniziruyushchego izlucheniya [Study of prognostic role of activity of enzymes of antioxidant defense in oxidative modification of proteins after the action of low intensity ionizing radiation]. Laboratornaya diagnostika, 1, 57–60.
  18. Oyelere, A. (2008). Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications, 1, 45–66. doi: 10.2147/nsa.s3707
  19. Sahoo, S. K., Parveen, S., Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3 (1), 20–31. doi: 10.1016/j.nano.2006.11.008
  20. Naumenko, A. M., Nyporko, A. Yu., Tsymbalyuk, O. V., Nuryshchenko, N. Ye., Voiteshenko, I. S., Davidovska, T. L. (2016). Molecular docking of nanosized titanium dioxide material to the extracellular part of GABAB-receptor. Studia Biologica, 10 (3-4), 5–16. Available at: http://publications.lnu.edu.ua/journals/index.php/biology/article/view/24
  21. Dukhin, A. S., Ulberg, Z. R., Karamushka, V. I., Gruzina, T. G. (2010). Peculiarities of live cells' interaction with micro- and nanoparticles. Advances in Colloid and Interface Science, 159 (1), 60–71. doi: 10.1016/j.cis.2010.05.004
  22. Singh, B. N., Prateeksha, Rao, Ch. V., Rawat, A. K. S., Upreti, D. K., Singh, B. R. (2015). Antimicrobial nanotechnologies: what are the current possibilities? Current Science, 108 (7), 1210–1213. Available at: http://www.currentscience.ac.in/Volumes/108/07/1210.pdf
  23. Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., Stone, V. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 40 (4), 328–346. doi: 10.3109/10408440903453074
  24. Rezaeinejad, S., Ivanov, V. (2011). Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiological Research, 166 (2), 129–135. doi: 10.1016/j.micres.2010.01.007
  25. Rosenberger, G.; Dirksen, G., Gründer, H. D., Stöber, M. (Eds.) (1990). Die klinische Untersuchung des Rindes. Berlin; Hamburg: Paul Parey, 367–385.
  26. Joshi, M., Sodhi, K. S., Pandey, R. et. al. (2014). Cancer chemotherapy and hepatotoxicity: an update. IndoAmerican J. of Pharm. Research, 4 (6), 2976–2984.
  27. Ramadori, G., Cameron, S. (2010). Effects of systemic chemotherapy on the liver. Annals of Hepatology, 9 (2), 133–143.
  28. Møller, P., Jacobsen, N. R., Folkmann, J. K., Danielsen, P. H., Mikkelsen, L., Hemmingsen, J. G. et. al. (2009). Role of oxidative damage in toxicity of particulates. Free Radical Research, 44 (1), 1–46. doi: 10.3109/10715760903300691
  29. Falfushynska, H. I., Gnatyshyna, L. L., Turta, O. O., Stoliar, O. B., Mitina, N. E., Zaichenko, O. S., Stoika, R. S. (2013). Functions of metallothioneins and a system of antioxidant defense under the effect of Co- and Zn-containing nanocomposites on crucian carp (Carassius auratus gibelio). The Ukrainian Biochemical Journal, 85 (3), 52–61. doi: 10.15407/ubj85.03.052
  30. Cornejo-Garrido, H., Kibanova, D., Nieto-Camacho, A., Guzmán, J., Ramírez-Apan, T., Fernández-Lomelín, P. et. al. (2011). Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions. Chemosphere, 84 (10), 1329–1335. doi: 10.1016/j.chemosphere.2011.05.018
  31. Jia, H. Y., Liu, Y., Zhang, X. J., Han, L., Du, L. B., Tian, Q., Xu, Y. C. (2009). Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum. Journal of the American Chemical Society, 131 (1), 40–41. doi: 10.1021/ja808033w
  32. Stoliar, O. B., Falfushynska, H. I. (2012). Metallothionein of aquatic animals as a biomarker: coverage of vulnerability. Global Journal of Environmental Science and Technology, 2, 5. Available at: http://www.cognizure.com/abstract.aspx?p=104637226
  33. Sutherland, D. E. K., Summers, K. L., Stillman, M. J. (2012). Noncooperative Metalation of Metallothionein 1a and Its Isolated Domains with Zinc. Biochemistry, 51 (33), 6690–6700. doi: 10.1021/bi3004523

Published

2017-12-31

How to Cite

Roman’ko, M. (2017). Determination of biochemical indicators of the functional state of livers of white rats for one-time internal intra-abdominal administration of the mixture of nanoparticles of metals (Ag, Cu, Fe, MnО2). ScienceRise: Biological Science, (6 (9), 14–22. https://doi.org/10.15587/2519-8025.2017.119811

Issue

Section

Biological Sciences