Influence of artificial inoculation by strains of phytopathogenic microorganisms isolated from different sources on physyological and biochemical parameters of galega orientalis plants

Authors

  • Hanna Huliaieva D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0002-3302-5832
  • Iryna Tokovenko D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0002-5546-721X
  • Lidiia Pasichnyk D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0002-5662-3106
  • Volodymyr Patyka D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0003-1896-7116

DOI:

https://doi.org/10.15587/2519-8025.2019.187221

Keywords:

Triticum aestivum, spring wheat, catalase, peroxidase, nodules, chlorophyll, carotenoids, A. laidlawii, P. syringae pv. atrofaciens, chlorophyll a fluorescence induction

Abstract

Aim. To evaluate changes in the physiological and biochemical parameters of Galega orientalis plants by the influence of artificial inoculation by phytopathogenic microorganisms, that have been isolated from various sources: strains of phytoplasmas – Acholeplasma laidlawii var granulum 118, isolated from wheat and Acholeplasma laidlawii 101 and 178, isolated from tomato and bacterial strain – P. syringae pv. atrofaciens D13, which have been isolated from wheat.

Methods. Microbiological methods – cultivation in the liquid nutrient medium, isolation of phytopathogenic microorganisms from plant material and artificial inoculation of experimental plants (subepidermal injection); biochemical – for the purpose of determination of photosynthetic pigments – chlorophylls a and b and carotenoids and activity of antioxidant enzymes catalase and peroxidase; photochemical – method of chlorophyll a fluorescence inducing to determine the photochemical activity of leaves; biometric – to determine the area of the root system and the number of nodules on the roots; statistical.

Results of research. In field experiments on the crops of the Fodder Galega under the conditions of artificial infection with strains of phytopathogenic microorganisms of different taxonomic groups – A. laidlawii var. granulum 118 and P. syringae pv. atrofaciens D13 (both isolated from wheat) and strains – A. laidlawii 101 and 178, isolated from tomatoes, the following changes were observed in the physiological and biochemical parameters of Galega orientalis plants: reduction of chlorophyll a and b content with increasing carotenoid content and inhibition of quantitative efficiency of PSII, especially in mixed A. laidlawii var. granulum 118 and P. syringae pv. atrofaciens D13, which was accompanied by a decrease in the area of the root system and the number of nodules on the roots of the plants. It was found, that the highest total activity of tissue Galega orientalis oxidase reductases – catalase and peroxidase was observed at inoculation with strains, isolated from wheat. The crude protein content of goat leaves was found to be lower at inoculation with strains, isolated from wheat than at inoculation with strains, isolated from tomatoes.

Conclusions. 1. By artificial inoculation, all investigated strains of pathogens revealed a decrease in the content of chlorophyll a and b, but most significantly – phytoplasma content of chlorophyll a has been decreased. The carotenoid content increased with respect to intact plants at inoculation of plants with phytopathogenic strains in the following consistency: 101+118>118>118+D13>178.

2. It was found, that at inoculation of Galega orientalis with phytopathogenic strains, isolated from wheat: inoculation with phytoplasma (monoinoculation) and especially – mix of strains: phytoplasma and bacterial, along with a decrease in the quantitative efficiency of PSII, an induction coefficient increased, which is probably caused by an increase in photorespiration or the acceptor action of phytopathogens.

3. It was found, that the highest total activity of Galega orientalis leaf catalase and peroxidase was observed at inoculation with strains, isolated from wheat – phytoplasma (monoinoculation) and mix of inoculation – phytoplasma and bacterial strains.

4. Suppression of the functional activity of the leaves for the destruction of the pigment-protein complexes of PS II at inoculation of phytopathogenic strains led to morphological changes – significant decrease in the area of the root system and the number of nodules: phytoplasma (monoinoculation) and mix phytoplasma and bacterial strains.

5. It was shown, that at inoculation with phytopathogenic strains, isolated from wheat: phytoplasma and bacterial inoculation mix and especially – the mono-inoculation of phytoplasma, the crude protein content in the leaves was less than the monoinoculation phytoplasma strain, isolated from tomatoes (178) and at mix inoculation phytoplasma strain, isolated from tomatoes and wheat (101+118)

Author Biographies

Hanna Huliaieva, D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143

PhD, Senior Researcher

Department of Phytopathogenic Bacteria

Iryna Tokovenko, D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143

PhD, Senior Researcher

Department of Phytopathogenic Bacteria

Lidiia Pasichnyk, D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143

Doctor of Biological Sciences, Senior Researcher

Department of Phytopathogenic Bacteria

Volodymyr Patyka, D. K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine Akademika Zabolotnoho str., 154, Kyiv, Ukraine, 03143

Doctor of Biological Sciences, Professor, Academician of NAAS, Head of Department

Department of Phytopathogenic Bacteria

References

  1. Antonets, S. S., Antonets, A. S., Pysarenko, V. M.; Pysarenko, V. M. (Ed.) (2011). Syderalni kultury. Poltava: Simon, 52.
  2. Patyka, V. P., Pasichnyk, L. A., Zhytkevych, N. V., Huliaieva, H. B., Tokovenko, I. P., Hnatiuk, T. T.; Patyka, V. P. (Ed.) (2016). Khvoroby kozliatnyka skhidnoho: monitorynh, diahnostyka, profilaktyka. Vinnytsia: Vindruk, 48.
  3. Cwalina-Ambroziak, B., Koc, J. (2012). Fungi colonising the above-ground parts of fodder galega (Galega orientalis Lam.) cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.). Acta Agrobotanica, 58 (1), 125–133. doi: http://doi.org/10.5586/aa.2005.018
  4. Bertaccini, A., Duduk, B., Paltrinieri, S., Contaldo, N. (2014). Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. American Journal of Plant Sciences, 5 (12), 1763–1788. doi: http://doi.org/10.4236/ajps.2014.512191
  5. Hvozdiak, R. I., Pasichnyk, L. A., Yakovleva, L. M., Moroz, S. M. et. al.; Patyka, V. P. (Ed.) (2011). Fitopatohenni bakterii, bakterialni khvoroby roslyn. Kyiv: TOV. «Interservis», 44.
  6. Kumari, S., Nagendran, K., Rai, A. B., Singh, B., Rao, G. P., Bertaccini, A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers in Microbiology, 10. doi: http://doi.org/10.3389/fmicb.2019.01349
  7. Pierro, R., Semeraro, T., Luvisi, A., Garg, H., Vergine, M., De Bellis, L., Gill, H. K. (2019). The Distribution of Phytoplasmas in South and East Asia: An Emerging Threat to Grapevine Cultivation. Frontiers in Plant Science, 10. doi: http://doi.org/10.3389/fpls.2019.01108
  8. Tokovenko, I. P., Patyka, V. P. (2015). Mikoplazmozy roslyn ta yikh serolohichna diahnostyka. Visnyk ahrarnoi nauky, 4, 28–30.
  9. Patyka, V. P., Pasichnyk, L. A. (2014). Fitopatohenni bakterii: fundamentalni i prykladni aspekty. Visnyk Umanskoho Natsionalnoho Universytetu sadivnytstva, 2, 7–11.
  10. Bultreys, A., Gheysen, I. I. (1999). Biological and molecular detection of toxic lipodepsipeptide-producing pseudomonas syringae strains and PCR identification in plants. Applied and Environmental Microbiology, 65 (5), 1904–1909.
  11. Hiscox, J. D., Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57 (12), 1332–1334. doi: http://doi.org/10.1139/b79-163
  12. Portatyvnyi fluorometr «Florotest»: nastanova z ekspluatatsii (2013). Instytut kibernetyky im. V. M. Hlushkova NAN Ukrainy, 24.
  13. Stirbet, A., Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104 (1-2), 236–257. doi: http://doi.org/10.1016/j.jphotobiol.2010.12.010
  14. Misra, A. N., Misra, M., Singh, R.; Misra, A. N. (Ed.) (2012). Chlorophyll Fluorescence in Plant Biology. Biophysics, 7, 171–192. doi: http://doi.org/10.5772/35111
  15. Korneev, D. Iu. (2002). Informacionnye vozmozhnosti metoda indukcii fluorescencii khlorofilla. Kyiv: Alterpres, 191.
  16. Braion, O. V., Kornieiev, D. Yu., Sniehur, O. O., Kytaiev, O. I. (2000). Instrumentalne vyvchennia fotosyntetychnoho aparatu za dopomohoiu induktsii fluorestsentsii khlorofilu. Kyiv: Vydavnycho-polihrafichnyi tsentr «Kyivskyi universytet», 15.
  17. Viktorov, D. P. (1991). Praktikum po fiziologii rastenii. Biologiia. Voronezh: Izd-vo Voronezhskogo unta, 158.
  18. Semak, I. V., Zіriaeva, T. N., Gubich, O. I. (2007). Biokhimiia belkov. Minsk: BGU, 49.
  19. Voskresenskaia, O. L., Aliabysheva, E. A., Polovnikova, M. G. (2006). Bolshoi praktikum po bioekologii. P. 1. Ioshkar-Ola: Mar. gos. un-t, 107.
  20. Dospekhov, B. A. (1985). Metodika polevogo opyta. Moscow: Agropromizdat, 351.
  21. Shadchyna, T. M., Huliaiev, B. I., Kirizii, D. A., Stasik, O. O., Priadkina, H. O., Storozhenko, V. O. (2006). Rehuliatsiia fotosyntezu i produktyvnosti roslyn: fiziolohichni ta ekolohichni aspekty. Kyiv: Fitosotsiotsentr, 384.
  22. Green, B. R., Parson, W. W. (Eds.) (2003). Light-Harvesting Antennas in Photosynthesis. Springer Science & Business Media, 516. doi: http://doi.org/10.1007/978-94-017-2087-8
  23. Sharma, D. K., Andersen, S. B., Ottosen, C.-O., Rosenqvist, E. (2014). Wheat cultivars selected for high Fv/Fmunder heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153 (2), 284–298. doi: http://doi.org/10.1111/ppl.12245
  24. Stasyk, O. O. (2009). Fotodykhannia i yoho fiziolohichne znachennia. Fiziolohiia roslyn: Problemy ta perspektyvy rozvytku. Vol. 1. Kyiv: Lohos, 170–199.
  25. Stasyk, O. O., Dzhons, Kh. H. (2011). Uchast fotodykhannia v reaktsii fotosyntetychnoho aparatu lystkiv pshenytsi na pidvyshchennia temperatury. Fyzyolohyia y byokhymyia kulturnikh rastenyi, 43 (1), 38–46.
  26. Kolupaev, Yu. E., Karpets, Yu. V., Oboznii, A. Y. (2011). Antyoksydantnaia systema rastenyi: uchastye v kletochnoi syhnalyzatsyy y adaptatsyy k deistvyiu stressorov. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia: Biolohiia, 1 (22), 6–34.

Published

2019-12-26

How to Cite

Huliaieva, H., Tokovenko, I., Pasichnyk, L., & Patyka, V. (2019). Influence of artificial inoculation by strains of phytopathogenic microorganisms isolated from different sources on physyological and biochemical parameters of galega orientalis plants. ScienceRise: Biological Science, (4 (19), 10–16. https://doi.org/10.15587/2519-8025.2019.187221

Issue

Section

Biological Sciences