Effect of oligoribonucleotides with D-mannitol complexes on oxidative stress indicators against thioacetamide-induced liver fibrosis
DOI:
https://doi.org/10.15587/2519-8025.2020.214418Keywords:
oxidative stress, antioxidant defence system, complexes of oligoribonucleotides with D-mannitol, liver fibrosisAbstract
The aim of the study. To determine the effect of oligoribonucleotides-D-mannitol complexes (ORN-D-M) on the indicators of oxidative destruction of biomolecules and the antioxidant system of cells in thioacetamide (TAA)-induced liver fibrosis.
Materials and methods. Liver fibrosis was induced for 8 weeks by intraperitoneal administration of TAA (150 mg/kg body weight). ORN-D-M (200 mg/kg per os) was administered orally during intoxication. At the end of the experiment, the liver was excised and examined for the content of oxidative stress products and the activity of antioxidant enzymes. Data were analyzed using the ANOVA test followed by Tukey post hoc testing.
Results. It is shown that the monotherapeutic treatment of ORN-D-M in TAA-induced liver fibrosis has a pronounced protective effect, which is manifested in the reduction of oxidative stress. ORN-D-M led to the attenuation of free radical damage of biopolymers, which was manifested in a decrease in the levels of peroxidation products of lipids and proteins with a simultaneous increase in the level of protein thiol groups and reduced glutathione. In addition, treatment with complexes increased the activity of the antioxidant defence system of cells.
Conclusions. The obtained results indicate that ORN-D-M complexes have a potential hepatoprotective effect in TAA-induced liver fibrosis. The complexes are able to effectively reduce the indicators of oxidative damage of biomolecules with a simultaneous increase in the activity of enzymes of the antioxidant system in TAA-induced fibrosis
References
- Aydin, M. M., Akcali, K. C. (2018). Liver fibrosis. The Turkish Journal of Gastroenterology, 29 (1), 14–21. doi: http://doi.org/10.5152/tjg.2018.17330
- Parola, M., Pinzani, M. (2019). Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine, 65, 37–55. doi: http://doi.org/10.1016/j.mam.2018.09.002
- Higashi, T., Friedman, S. L., Hoshida, Y. (2017). Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews, 121, 27–42. doi: http://doi.org/10.1016/j.addr.2017.05.007
- Luangmonkong, T., Suriguga, S., Mutsaers, H. A. M., Groothuis, G. M. M., Olinga, P., Boersema, M. (2018). Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Reviews of Physiology, Biochemistry and Pharmacology, 175, 71–102. doi: http://doi.org/10.1007/112_2018_10
- Tacke, F. (2017). Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology, 66 (6), 1300–1312. doi: http://doi.org/10.1016/j.jhep.2017.02.026
- Koyama, Y., Brenner, D. A. (2017). Liver inflammation and fibrosis. Journal of Clinical Investigation, 127 (1), 55–64. doi: http://doi.org/10.1172/jci88881
- Heymann, F., Tacke, F. (2016). Immunology in the liver – from homeostasis to disease. Nature Reviews Gastroenterology & Hepatology, 13 (2), 88–110. doi: http://doi.org/10.1038/nrgastro.2015.200
- Weiskirchen, R. (2016). Hepatoprotective and anti-fibrotic agents: It’s time to take the next step. Frontiers in Pharmacology, 6, 303. doi: http://doi.org/10.3389/fphar.2015.00303
- Feng, R., Yuan, X., Shao, C., Ding, H., Liebe, R., Weng, H.-L. (2018). Are we any closer to treating liver fibrosis (and if no, why not)? Journal of Digestive Diseases, 19 (3), 118–126. doi: http://doi.org/10.1111/1751-2980.12584
- Melnichuk, N., Semernikova, L., Tkachuk, Z. (2017). Complexes of Oligoribonucleotides with D-Mannitol Inhibit Hemagglutinin-Glycan Interaction and Suppress Influenza A Virus H1N1 (A/FM/1/47) Infectivity In Vitro. Pharmaceuticals (Basel, Switzerland), 10 (3), 71. doi: http://doi.org/10.3390/ph10030071
- Vivcharyk, M. M., Ilchenko, O. O., Levchenko, S. M., Tkachuk, Z. Y. (2016). Complexation of RNA with mannitol, its spectral characteristics and biological activity. Reports of the National Academy of Sciences of Ukraine, 10, 78–83. doi: http://doi.org/10.15407/dopovidi2016.10.078
- Shchodryi, V. B., Kachkovskyi, O. D., Slominskyi, Y. L., Shaudyk, Y. O., Tkachuk, Z. Y. (2017). Study of the interaction between mannitol and nucleosides using fluorescent probe. Reports of the National Academy of Sciences of Ukraine, 7, 85–90. doi: http://doi.org/10.15407/dopovidi2017.07.085
- Shchodryi, V. B., Kozlov, O. V., Rybenchuk, A. O., Boyko, V. V., Bortnitskiy, V. I. (2017). Study of products of the interaction of RNA with mannitol, by using the pyrolytic mass spectrometry method. Reports of the National Academy of Sciences of Ukraine, 2, 79–87. doi: http://doi.org/10.15407/dopovidi2017.02.079
- Frolov, V., Sotska, Ya., Oksana, K., Tkachuk, Z. (2012). Otsinka efektyvnosti nukleksu v likuvanni khvorykh na khronichnyi virusnyi hepatyt S. Ukrainskyi medychnyi almanakh, 10, 16–18.
- Toropchyn, V. (2011). Vplyv kombinatsii enerlivu ta nukleksa na pokaznyky systemy hlutationu u khvorykh na nealkoholnyi steatohepatyt na tli syndromu khronichnoi vtomy. Ukrainskyi morfolohichnyi almanakh, 9, 124–128.
- Marchyshak, T., Yakovenko, T., Shmarakov, I., Tkachuk, Z. (2018). The Potential Protective Effect of Oligoribonucleotides-d-Mannitol Complexes against Thioacetamide-Induced Hepatotoxicity in Mice. Pharmaceuticals, 11 (3), 77. doi: http://doi.org/10.3390/ph11030077
- Shmarakov, I. O., Marchyshak, Т. V., Borschovetska, V. L., Marchenko, M. M., Tkachuk, Z. Y. (2015). Hepatoprotective activity of exogenous RNA. The Ukrainian Biochemical Journal, 87 (4), 37–44. doi: http://doi.org/10.15407/ubj87.04.037
- Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95 (2), 351–358. doi: http://doi.org/10.1016/0003-2697(79)90738-3
- Levine, R. L., Garland, D., Oliver, C. N., Stadtman, E. R. (1990). Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods in Enzymology, 186, 464–478. doi: http://doi.org/10.1016/0076-6879(90)86141-h
- Murphy, M. E., Kehrer, J. P. (1989). Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochemical Journal, 260 (2), 359–364. doi: http://doi.org/10.1042/bj2600359
- Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82 (1), 70–77. doi: http://doi.org/10.1016/0003-9861(59)90090-6
- Razygraev, A. V. (2004). Metod opredeleniia glutationperoksidaznoi aktivnosti s ispolzovaniem peroksida vodoroda i 5,5’-ditiobis (2-nitrobenzoinoi kisloty). Kliniko-laboratornii konsilium, 4, 19–22.
- Borvinskaia, E., Smirnov, L. (2010). Nekotorye metodicheskie aspekty opredeleniia aktivnosti glutation-S-transferazy v tkaniakh ryb. Uchenye zapiski petrozavodskogo gosudarstvennogo universiteta, 6, 19–21.
- Lai, M., Afdhal, N. H. (2019). Liver Fibrosis Determination. Gastroenterology Clinics of North America, 48 (2), 281–289. doi: http://doi.org/10.1016/j.gtc.2019.02.002
- Iredale, J., Campana, L. (2017). Regression of Liver Fibrosis. Seminars in Liver Disease, 37 (1), 1–10. doi: http://doi.org/10.1055/s-0036-1597816
- Zhang, C.-Y., Yuan, W.-G., He, P., Lei, J.-H., Wang, C.-X. (2016). Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World Journal of Gastroenterology, 22 (48), 10512–10522. doi: http://doi.org/10.3748/wjg.v22.i48.10512
- Tkachuk, Z. Y., Tkachuk, V. V., Tkachuk, L. V. (2006). The study on membrane-stabilizing and anti-inflammatory actions of yeast RNA in vivo and in vitro. Biopolymers and Cell, 22 (2), 109–116. doi: http://doi.org/10.7124/bc.000723
- Torok, N. J. (2016). Dysregulation of redox pathways in liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311 (4), 667–674. doi: http://doi.org/10.1152/ajpgi.00050.2016
- Xu, F., Liu, C., Zhou, D., Zhang, L. (2016). TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. Journal of Histochemistry & Cytochemistry, 64 (3), 157–167. doi: http://doi.org/10.1369/0022155415627681
- Li, Z. L., Shi, Y., Le, G., Ding, Y., Zhao, Q. (2016). 24-week exposure to oxidized tyrosine induces hepatic fibrosis involving activation of the MAPK/TGF- β 1 signaling pathway in sprague-dawley rats model. Oxidative Medicine and Cellular Longevity, 4 (1), 1–12. doi: http://doi.org/10.1155/2016/3123294
- Kim, J.-Y., An, H.-J., Kim, W.-H., Gwon, M.-G., Gu, H., Park, Y.-Y., Park, K.-K. (2017). Anti-fibrotic Effects of Synthetic Oligodeoxynucleotide for TGF-β1 and Smad in an Animal Model of Liver Cirrhosis. Molecular Therapy – Nucleic Acids, 8, 250–263. doi: http://doi.org/10.1016/j.omtn.2017.06.022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Tetiana Marchyshak, Tetiana Yakovenko, Zenoviy Tkachuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.