Biological features of blood lymphocytes of the primary patients with endometrial cancer
DOI:
https://doi.org/10.15587/2519-8025.2021.227335Keywords:
endometrial cancer, radiation therapy, blood T-lymphocytes, chromosomal aberrations, dose dependence, predictors of radiosensitivityAbstract
The aim: to examine the radiosensitivity of chromosomes of T-lymphocytes in the blood of primary patients with endometrial cancer depending on the radiation dose. It was expected that the investigations would reveal a cytogenetic parameter as a predictor of radiosensitivity in non-malignant cells of patients exposed to curative irradiation.
Materials and methods. Blood samples from 20 primary patients and 30 conditionally healthy donors were examined. Peripheral blood T-lymphocytes culture test system with metaphase chromosome aberration analysis was used. X-ray test-irradiation was performed at G0-stage of the cell cycle in the dose range of 0.5–3.0 Gy.
Results. It was shown that the spontaneous level of chromosome aberrations in lymphocytes of primary patients before anti-tumour therapy is 7,82±0,33 aberrations/100 metaphases. This is more than 2-fold higher than the upper limit of average population index and approximately 6-fold higher than the data of own control. In our study during X-ray irradiation of cells cultures of patients, it was found for the first time that the total frequency of radiation-induced chromosome aberrations obeys the classical linear quadratic dose dependence with a predominance of linear component values; the frequency of radiation markers – also linear quadratic dose dependence, but with a predominance of quadratic component.
Conclusions. High specificity of T-lymphocyte chromosomes to exposure to ionizing radiation as well as strict dependence of chromosome aberration yield on exposure dose justify their use as predictors of radiosensitivity of healthy cells from the tumour environment. The revealed dependences of induction of chromosomal damage in T-lymphocytes of patients with endometrial cancer prove the need for a personalized approach to plan the course of radiation therapy
References
- Fedorenko, Z. P., Hulak, L. O., Mykhailovych, Yu. Y., Horokh, Ye. L., Ryzhov, A. Yu., Sumkina, O. V., Kutsenko, L. B.; Kolesnik, O. O. (Ed.) (2020). Rak v Ukraini, 2018-2019 rr. Zakhvoriuvanist, smertnist, pokaznyky diialnosti onkolohichnoi sluzhby: Biuleten Natsionalnoho kantser-reiestru No. 21 Natsionalnoho instytutu raku Ukrainy. Kropyvnytskyi: POLIUM, 148.
- Joiner, M., Kogel, A. (2013). Basic clinical radiobiology. London: Hodder Arnold an Haccette UK Company, 375. doi: http://doi.org/10.1201/b15450
- Domina, E. A., Philchenkov, A., Dubrovska, A. (2018). Individual Response to Ionizing Radiation and Personalized Radiotherapy. Critical Reviews™ in Oncogenesis, 23 (1-2), 69–92. doi: http://doi.org/10.1615/critrevoncog.2018026308
- Denham, J. W., Hauer-Jensen, M., Peters, L. J. (2001). Is it time for a new formalism to categorize normal tissue radiation injury? International Journal of Radiation Oncology Biology Physics, 50 (5), 1105–1106. doi: http://doi.org/10.1016/s0360-3016(01)01556-5
- Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214 (2), 199–210. doi: http://doi.org/10.1002/path.2277
- Hakenjos, M. Bamberg, H. P. Rodeman, L. (2000). TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. International Journal of Radiation Biology, 76 (4), 503–509. doi: http://doi.org/10.1080/095530000138501
- Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Reviews Cancer, 6 (9), 702–713. doi: http://doi.org/10.1038/nrc1950
- Suit, H., Goldberg, S., Niemierko, A., Ancukiewicz, M., Hall, E., Goitein, M. et. al. (2007). Secondary Carcinogenesis in Patients Treated with Radiation: A Review of Data on Radiation-Induced Cancers in Human, Non-human Primate, Canine and Rodent Subjects. Radiation Research, 167(1), 12–42. doi: http://doi.org/10.1667/rr0527.1
- Demina, E. A. (2016). Radiogennii rak: epidemiologiia i pervichnaia profilaktika. Kyiv: Naukova dumka, 196.
- Vorobeva, N. Iu., Antonenko, A. V., Osipov, A. N. (2011). Osobennosti reaktsii limfotsitov krovi bolnykh rakom molochnoi zhelezy na obluchenie in vitro. Radiatsionnaia biologiia. Radioekologiia, 51 (4), 451–456.
- Domina, E. A., Smolanka, I. I., Mikhailenko, V. M. (2018). Influence of the melanin-glucan complex on the radiosensitivity of cells of patients with premalignant pathology of breast. Reports of the National Academy of Sciences of Ukraine, 11, 84–90. doi: http://doi.org/10.15407/dopovidi2018.11.084
- Kolusayin Ozar, M. O., Orta, T. (2005). The use of chromosome aberrations in predicting breast cancer risk. Journal of Experimental & Clinical Cancer Research, 24 (2), 217–222.
- Pelevina, I. I., Aleschenko, A. V., Antoschina, M. M. et. al. (2009). Povrezhdennost geneticheskogo apparata, induktsiia adaptivnogo otveta v limfotsitakh krovi pri rake predstatelnoi zhelezy. Sviaz s effektivnostiu luchevoi terapii opukholei. Radiatsionnaia biologiia. Radioekologiia, 49 (4), 419–424.
- Gaziev, A., Shaikhaev, G.; Nenoi, M. (Ed.) (2012). Limited Repair of Critical DNA Damage in Cells Exposed to Low Dose Radiation. Current Topics in Ionizing Radiation Research. Vienna: Intech, 51–81. doi: http://doi.org/10.5772/33611
- Tsishnatti, A. A., Rodneva, S. M., Smetanina, N. M. et. al. (2019). Thermo-radiosensitization of chemotherapy-resistant tumour cells. Radiobiological Basics of Radiation Therapy, International Conference. Dubna, 155–156.
- Bhogal, N., Kaspler, P., Jalali, F., Hyrien, O., Chen, R., Hill, R. P., Bristow, R. G. (2010). Late Residual γ-H2AX Foci In Murine Skin are Dose Responsive and Predict RadiosensitivityIn Vivo. Radiation Research, 173 (1), 1–9. doi: http://doi.org/10.1667/rr1851.1
- Pelevina, I. I., Aleschenko, A. V., Antoschina, M. M. et. al. (2014). Sviazany li svoistva limfotsitov perifericheskoi krovi u bolnykh rakom predstatelnoi zhelezy s effektivnostiu luchevoi terapii? Radiatsionnaia biologiia. Radioekologiia, 54 (3), 273–282. doi: http://doi.org/10.7868/s0869803114030126
- Khvostunov, I. K., Kursova, L. V., Sevan’kaev, A. V., Ragulin, Y. A. et. al. (2019). The estimation of radiation effect to cancer patients treated with beam-therapy by means of analysis of chromosomal aberrations in blood lymphocytes. “Radiation and Risk” Bulletin of the National Radiation and Epidemiological Registry, 28 (2), 87–101. doi: http://doi.org/10.21870/0131-3878-2019-28-2-87-101
- Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. World Health Organization (2011). Vienna: IAEA, 247.
- Domina, E. A., Chekhun, V. F. (2013). Experimental validation of prevention of the development of stochastic effects of low doses of ionizing radiation based on the analysis of human lymphocytes' chromosome aberrations. Experimental Oncology, 35 (1), 65–68.
- Kliushin, D. A., Petunin, IU. I. (2008). Osnovy dokazatelnoi meditsiny. Kyiv: Dіalektika, 320.
- Domina, E. A. (2019). The dependence of dose/effects in human radiation cytogenetic. Problems of Radiation Medicine and Radiobiology, 24, 235–249. doi: http://doi.org/10.33145/2304-8336-2019-24-235-249
- Lee, R., Yamada, S., Yamamoto, N., Miyamoto, T., Ando, K., Durante, M., Tsujii, H. (2004). Chromosomal Aberrations in Lymphocytes of Lung Cancer Patients Treated with Carbon Ions. Journal of Radiation Research, 45 (2), 195–199. doi: http://doi.org/10.1269/jrr.45.195
- Senthamizhchelvan, S., Pant, G. S., Rath, G. K., Julka, P. K., Nair, O., Joshi, R. C. et. al. (2006). Biodosimetry using chromosome aberrations in human lymphocytes. Radiation Protection Dosimetry, 123 (2), 241–245. doi: http://doi.org/10.1093/rpd/ncl109
- Roch-Levre, S., Pouzoulet, F., Giraudet, A. L., Voisin, Pa., Vaurijoux, A., Gruel, G. et. al. (2010). Cytogenetic assessment of heterogeneous radiation doses in cancer patients treated with fractionated radiotherapy. British Journal Radiology, 83 (993), 759–766. doi: http://doi.org/10.1259/bjr/210225597
- Domina, E. (2020). Expediency on radiomitigators in radiation therapy of cancer patients. Journal of Science. Lyon, 1 (10), 7–11.
- Domina E. (2020).The specificities of radiation carcinogenesis. Journal of Science. Lyon, 1 (11), 8–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Emiliia Domina, Olga Hrinchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.