Biological features of blood lymphocytes of the primary patients with endometrial cancer

Authors

  • Emiliia Domina R. E. Kavetsky Institute of Experimental pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-1058-0489
  • Olha Hrinchenko R. E. Kavetsky Institute of Experimental pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2021.227335

Keywords:

endometrial cancer, radiation therapy, blood T-lymphocytes, chromosomal aberrations, dose dependence, predictors of radiosensitivity

Abstract

The aim: to examine the radiosensitivity of chromosomes of T-lymphocytes in the blood of primary patients with endometrial cancer depending on the radiation dose. It was expected that the investigations would reveal a cytogenetic parameter as a predictor of radiosensitivity in non-malignant cells of patients exposed to curative irradiation.

Materials and methods. Blood samples from 20 primary patients and 30 conditionally healthy donors were examined. Peripheral blood T-lymphocytes culture test system with metaphase chromosome aberration analysis was used. X-ray test-irradiation was performed at G0-stage of the cell cycle in the dose range of 0.5–3.0 Gy.

Results. It was shown that the spontaneous level of chromosome aberrations in lymphocytes of primary patients before anti-tumour therapy is 7,82±0,33 aberrations/100 metaphases. This is more than 2-fold higher than the upper limit of average population index and approximately 6-fold higher than the data of own control. In our study during X-ray irradiation of cells cultures of patients, it was found for the first time that the total frequency of radiation-induced chromosome aberrations obeys the classical linear quadratic dose dependence with a predominance of linear component values; the frequency of radiation markers – also linear quadratic dose dependence, but with a predominance of quadratic component.

Conclusions. High specificity of T-lymphocyte chromosomes to exposure to ionizing radiation as well as strict dependence of chromosome aberration yield on exposure dose justify their use as predictors of radiosensitivity of healthy cells from the tumour environment. The revealed dependences of induction of chromosomal damage in T-lymphocytes of patients with endometrial cancer prove the need for a personalized approach to plan the course of radiation therapy

Author Biographies

Emiliia Domina, R. E. Kavetsky Institute of Experimental pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine

Doctor of Biological Sciences, Professor, Head of Department

Department of Biological Effects of Ionizing and Non-Ionizing Radiation

Olha Hrinchenko, R. E. Kavetsky Institute of Experimental pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine

Postgraduate Student

Department of Biological Effects of Ionizing and Non-Ionizing Radiation

References

  1. Fedorenko, Z. P., Hulak, L. O., Mykhailovych, Yu. Y., Horokh, Ye. L., Ryzhov, A. Yu., Sumkina, O. V., Kutsenko, L. B.; Kolesnik, O. O. (Ed.) (2020). Rak v Ukraini, 2018-2019 rr. Zakhvoriuvanist, smertnist, pokaznyky diialnosti onkolohichnoi sluzhby: Biuleten Natsionalnoho kantser-reiestru No. 21 Natsionalnoho instytutu raku Ukrainy. Kropyvnytskyi: POLIUM, 148.
  2. Joiner, M., Kogel, A. (2013). Basic clinical radiobiology. London: Hodder Arnold an Haccette UK Company, 375. doi: http://doi.org/10.1201/b15450
  3. Domina, E. A., Philchenkov, A., Dubrovska, A. (2018). Individual Response to Ionizing Radiation and Personalized Radiotherapy. Critical Reviews™ in Oncogenesis, 23 (1-2), 69–92. doi: http://doi.org/10.1615/critrevoncog.2018026308
  4. Denham, J. W., Hauer-Jensen, M., Peters, L. J. (2001). Is it time for a new formalism to categorize normal tissue radiation injury? International Journal of Radiation Oncology Biology Physics, 50 (5), 1105–1106. doi: http://doi.org/10.1016/s0360-3016(01)01556-5
  5. Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214 (2), 199–210. doi: http://doi.org/10.1002/path.2277
  6. Hakenjos, M. Bamberg, H. P. Rodeman, L. (2000). TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. International Journal of Radiation Biology, 76 (4), 503–509. doi: http://doi.org/10.1080/095530000138501
  7. Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Reviews Cancer, 6 (9), 702–713. doi: http://doi.org/10.1038/nrc1950
  8. Suit, H., Goldberg, S., Niemierko, A., Ancukiewicz, M., Hall, E., Goitein, M. et. al. (2007). Secondary Carcinogenesis in Patients Treated with Radiation: A Review of Data on Radiation-Induced Cancers in Human, Non-human Primate, Canine and Rodent Subjects. Radiation Research, 167(1), 12–42. doi: http://doi.org/10.1667/rr0527.1
  9. Demina, E. A. (2016). Radiogennii rak: epidemiologiia i pervichnaia profilaktika. Kyiv: Naukova dumka, 196.
  10. Vorobeva, N. Iu., Antonenko, A. V., Osipov, A. N. (2011). Osobennosti reaktsii limfotsitov krovi bolnykh rakom molochnoi zhelezy na obluchenie in vitro. Radiatsionnaia biologiia. Radioekologiia, 51 (4), 451–456.
  11. Domina, E. A., Smolanka, I. I., Mikhailenko, V. M. (2018). Influence of the melanin-glucan complex on the radiosensitivity of cells of patients with premalignant pathology of breast. Reports of the National Academy of Sciences of Ukraine, 11, 84–90. doi: http://doi.org/10.15407/dopovidi2018.11.084
  12. Kolusayin Ozar, M. O., Orta, T. (2005). The use of chromosome aberrations in predicting breast cancer risk. Journal of Experimental & Clinical Cancer Research, 24 (2), 217–222.
  13. Pelevina, I. I., Aleschenko, A. V., Antoschina, M. M. et. al. (2009). Povrezhdennost geneticheskogo apparata, induktsiia adaptivnogo otveta v limfotsitakh krovi pri rake predstatelnoi zhelezy. Sviaz s effektivnostiu luchevoi terapii opukholei. Radiatsionnaia biologiia. Radioekologiia, 49 (4), 419–424.
  14. Gaziev, A., Shaikhaev, G.; Nenoi, M. (Ed.) (2012). Limited Repair of Critical DNA Damage in Cells Exposed to Low Dose Radiation. Current Topics in Ionizing Radiation Research. Vienna: Intech, 51–81. doi: http://doi.org/10.5772/33611
  15. Tsishnatti, A. A., Rodneva, S. M., Smetanina, N. M. et. al. (2019). Thermo-radiosensitization of chemotherapy-resistant tumour cells. Radiobiological Basics of Radiation Therapy, International Conference. Dubna, 155–156.
  16. Bhogal, N., Kaspler, P., Jalali, F., Hyrien, O., Chen, R., Hill, R. P., Bristow, R. G. (2010). Late Residual γ-H2AX Foci In Murine Skin are Dose Responsive and Predict RadiosensitivityIn Vivo. Radiation Research, 173 (1), 1–9. doi: http://doi.org/10.1667/rr1851.1
  17. Pelevina, I. I., Aleschenko, A. V., Antoschina, M. M. et. al. (2014). Sviazany li svoistva limfotsitov perifericheskoi krovi u bolnykh rakom predstatelnoi zhelezy s effektivnostiu luchevoi terapii? Radiatsionnaia biologiia. Radioekologiia, 54 (3), 273–282. doi: http://doi.org/10.7868/s0869803114030126
  18. Khvostunov, I. K., Kursova, L. V., Sevan’kaev, A. V., Ragulin, Y. A. et. al. (2019). The estimation of radiation effect to cancer patients treated with beam-therapy by means of analysis of chromosomal aberrations in blood lymphocytes. “Radiation and Risk” Bulletin of the National Radiation and Epidemiological Registry, 28 (2), 87–101. doi: http://doi.org/10.21870/0131-3878-2019-28-2-87-101
  19. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. World Health Organization (2011). Vienna: IAEA, 247.
  20. Domina, E. A., Chekhun, V. F. (2013). Experimental validation of prevention of the development of stochastic effects of low doses of ionizing radiation based on the analysis of human lymphocytes' chromosome aberrations. Experimental Oncology, 35 (1), 65–68.
  21. Kliushin, D. A., Petunin, IU. I. (2008). Osnovy dokazatelnoi meditsiny. Kyiv: Dіalektika, 320.
  22. Domina, E. A. (2019). The dependence of dose/effects in human radiation cytogenetic. Problems of Radiation Medicine and Radiobiology, 24, 235–249. doi: http://doi.org/10.33145/2304-8336-2019-24-235-249
  23. Lee, R., Yamada, S., Yamamoto, N., Miyamoto, T., Ando, K., Durante, M., Tsujii, H. (2004). Chromosomal Aberrations in Lymphocytes of Lung Cancer Patients Treated with Carbon Ions. Journal of Radiation Research, 45 (2), 195–199. doi: http://doi.org/10.1269/jrr.45.195
  24. Senthamizhchelvan, S., Pant, G. S., Rath, G. K., Julka, P. K., Nair, O., Joshi, R. C. et. al. (2006). Biodosimetry using chromosome aberrations in human lymphocytes. Radiation Protection Dosimetry, 123 (2), 241–245. doi: http://doi.org/10.1093/rpd/ncl109
  25. Roch-Levre, S., Pouzoulet, F., Giraudet, A. L., Voisin, Pa., Vaurijoux, A., Gruel, G. et. al. (2010). Cytogenetic assessment of heterogeneous radiation doses in cancer patients treated with fractionated radiotherapy. British Journal Radiology, 83 (993), 759–766. doi: http://doi.org/10.1259/bjr/210225597
  26. Domina, E. (2020). Expediency on radiomitigators in radiation therapy of cancer patients. Journal of Science. Lyon, 1 (10), 7–11.
  27. Domina E. (2020).The specificities of radiation carcinogenesis. Journal of Science. Lyon, 1 (11), 8–12.

Downloads

Published

2021-03-31

How to Cite

Domina, E., & Hrinchenko, O. (2021). Biological features of blood lymphocytes of the primary patients with endometrial cancer . ScienceRise: Biological Science, (1(26), 4–9. https://doi.org/10.15587/2519-8025.2021.227335

Issue

Section

Biological Sciences