Overview of concepts of the sphingolipid metabolism
DOI:
https://doi.org/10.15587/2519-8025.2021.234699Keywords:
sphingolipids, ceramides, mitochondria, apoptosis, insulin resistance, virusesAbstract
Sphingolipids are important components of the cell involved in the processes of apoptosis, inflammation, oncogenesis, aging, proliferation, differentiation and growth of cells, as well as in the stress-induced response of cells.
The aim. To study research literature for summarizing the new concepts of sphingolipids biochemical role in the development of various pathological conditions.
Materials and methods. The open sources of scientific literature were analyzed.
Results and discussion. According to the analyzed data, the occurrence of pathologies is associated with the sphingolipid imbalance in cells, and excessive accumulation of ceramides, while by preventing the accumulation of ceramides in cells, it is possible to prevent the appearance of cardiac, neurological and metabolic pathologies, including insulin resistance, heart disease (atherosclerosis, heart failure), as well as hepatic steatosis. Therefore, it is promising to search for drugs that can inhibit individual components of the metabolism of sphingolipids and prevent the development of pathology.
Conclusions. Sphingolipids are involved in numerous processes in cells, and changes in the balance of individual members of this class of lipids can play a crucial role in the development of pathological conditions. At the same time, the accumulated data on disorders of the sphingolipid metabolism in various diseases contribute to the development of drugs based on inhibition of the corresponding components of the metabolism of these lipids.
References
- McQuiston, T., Haller, C., Poeta, M. (2006). Sphingolipids as Targets for Microbial Infections. Mini-Reviews in Medicinal Chemistry, 6 (6), 671–680. doi: http://doi.org/10.2174/138955706777435634
- Hannun, Y. A., Obeid, L. M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9 (2), 139–150. doi: http://doi.org/10.1038/nrm2329
- Patwardhan, G. A., Beverly, L. J., Siskind, L. J. (2015). Sphingolipids and mitochondrial apoptosis. Journal of Bioenergetics and Biomembranes, 48(2), 153–168. doi: http://doi.org/10.1007/s10863-015-9602-3
- Gomez-Muñoz, A., Presa, N., Gomez-Larrauri, A., Rivera, I.-G., Trueba, M., Ordoñez, M. (2016). Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Progress in Lipid Research, 61, 51–62. doi: http://doi.org/10.1016/j.plipres.2015.09.002
- Zhu, S., Xu, Y., Wang, L., Liao, S., Wang, Y., Shi, M. et. al. (2021). Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple‐negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways. Cancer Cell International, 21 (1). doi: http://doi.org/10.1186/s12935-020-01735-5
- Nganga, R., Oleinik, N., Ogretmen, B. (2018). Mechanisms of Ceramide-Dependent Cancer Cell Death. Sphingolipids in Cancer, 1–25. doi: http://doi.org/10.1016/bs.acr.2018.04.007
- Babenko, N. A., Garkavenko, V. V., Storozhenko, G. V., Timofiychuk, O. A. (2016). Role of acid sphingomyelinase in the age-dependent dysregulation of sphingolipids turnover in the tissues of rats. General Physiology and Biophysics, 35 (2), 195–205. doi: http://doi.org/10.4149/gpb_2015046
- Babenko, N. A., Kharchenko, V. S. (2013). Age-Related Changes in the Phospholipase D-Dependent Signal Pathway of Insulin in the Rat Neocortex. Neurophysiology, 45 (2), 120–127. doi: http://doi.org/10.1007/s11062-013-9346-9
- Babenko, N. A., Storozhenko, G. V. (2017). Role of ceramide in the aging-related decrease of cardiolipin content in the rat heart. Advances in Gerontology, 7 (3), 195–200. doi: http://doi.org/10.1134/s207905701703002x
- Grbčić, P., Car, E. P. M., Sedić, M. (2020). Targeting Ceramide Metabolism in Hepatocellular Carcinoma: New Points for Therapeutic Intervention. Current Medicinal Chemistry, 27 (39), 6611–6627. doi: http://doi.org/10.2174/0929867326666190911115722
- Kartal Yandım, M., Apohan, E., Baran, Y. (2012). Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemotherapy and Pharmacology, 71 (1), 13–20. doi: http://doi.org/10.1007/s00280-012-1984-x
- Edsfeldt, A., Dunér, P., Ståhlman, M., Mollet, I. G., Asciutto, G., Grufman, H. et. al. (2016). Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1132–1140. doi: http://doi.org/10.1161/atvbaha.116.305675
- Dinoff, A., Herrmann, N., Lanctôt, K. L. (2017). Ceramides and depression: A systematic review. Journal of Affective Disorders, 213, 35–43. doi: http://doi.org/10.1016/j.jad.2017.02.008
- Wang, G., Bieberich, E. (2018). Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Advances in Biological Regulation, 70, 51–64. doi: http://doi.org/10.1016/j.jbior.2018.09.013
- Field, B. C., Gordillo, R., Scherer, P. E. (2020). The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.569250
- Fang, Z., Pyne, S., Pyne, N. J. (2019). Ceramide and sphingosine 1-phosphate in adipose dysfunction. Progress in Lipid Research, 74, 145–159. doi: http://doi.org/10.1016/j.plipres.2019.04.001
- Li, N., Zhang, F. (2016). Implication of sphingosin-1-phosphate in cardiovascular regulation. Frontiers in Bioscience, 21 (7), 1296–1313. doi: http://doi.org/10.2741/4458
- Pralhada Rao, R., Vaidyanathan, N., Rengasamy, M., Mammen Oommen, A., Somaiya, N., Jagannath, M. R. (2013). Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. Journal of Lipids, 2013, 1–12. doi: http://doi.org/10.1155/2013/178910
- Apostolopoulou, M., Gordillo, R., Koliaki, C., Gancheva, S., Jelenik, T., De Filippo, E. et. al. (2018). Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care, 41 (6), 1235–1243. doi: http://doi.org/10.2337/dc17-1318
- Bajwa, H., Azhar, W. (2021). Niemann-Pick Disease. StatPearls. Treasure Island (FL): StatPearls Publishing.
- Schneider-Schaulies, J., Schneider-Schaulies, S. (2013). Viral Infections and Sphingolipids. Handbook of Experimental Pharmacology. Vienna: Springer, 321–340. doi: http://doi.org/10.1007/978-3-7091-1511-4_16
- Bezgovsek, J., Gulbins, E., Friedrich, S.-K., Lang, K. S., Duhan, V. (2018). Sphingolipids in early viral replication and innate immune activation. Biological Chemistry, 399 (10), 1115–1123. doi: http://doi.org/10.1515/hsz-2018-0181
- Hernández-Corbacho, M. J., Salama, M. F., Canals, D., Senkal, C. E., Obeid, L. M. (2017). Sphingolipids in mitochondria. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 1862 (1), 56–68. doi: http://doi.org/10.1016/j.bbalip.2016.09.019
- Kong, J. Y., Klassen, S. S., Rabkin, S. W. (2005). Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: A potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Molecular and Cellular Biochemistry, 278 (1-2), 39–51. doi: http://doi.org/10.1007/s11010-005-1979-6
- Novgorodov, S. A., Wu, B. X., Gudz, T. I., Bielawski, J., Ovchinnikova, T. V., Hannun, Y. A., Obeid, L. M. (2011). Novel Pathway of Ceramide Production in Mitochondria. Journal of Biological Chemistry, 286 (28), 25352–25362. doi: http://doi.org/10.1074/jbc.m110.214866
- Dyatlovitskaya, E. V. (2007). The role of lysosphingolipids in the regulation of biological processes. Biochemistry (Moscow), 72 (5), 479–484. doi: http://doi.org/10.1134/s0006297907050033
- Hannun, Y. A., Obeid, L. M. (2011). Many Ceramides. Journal of Biological Chemistry, 286 (32), 27855–27862. doi: http://doi.org/10.1074/jbc.r111.254359
- Bionda, C., Portoukalian, J., Schmitt, D., Rodriguez-Lafrasse, C., Ardail, D. (2004). Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochemical Journal, 382 (2), 527–533. doi: http://doi.org/10.1042/bj20031819
- Yu, J., Novgorodov, S. A., Chudakova, D., Zhu, H., Bielawska, A., Bielawski, J. et. al. (2007). JNK3 Signaling Pathway Activates Ceramide Synthase Leading to Mitochondrial Dysfunction. Journal of Biological Chemistry, 282 (35), 25940–25949. doi: http://doi.org/10.1074/jbc.m701812200
- Deng, X., Yin, X., Allan, R., Lu, D. D., Maurer, C. W., Haimovitz-Friedman, A. et. al. (2008). Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. elegans. Science, 322 (5898), 110–115. doi: http://doi.org/10.1126/science.1158111
- Yang, G., Badeanlou, L., Bielawski, J., Roberts, A. J., Hannun, Y. A., Samad, F. (2009). Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. American Journal of Physiology-Endocrinology and Metabolism, 297 (1), E211–E224. doi: http://doi.org/10.1152/ajpendo.91014.2008
- Park, M., Kaddai, V., Ching, J., Fridianto, K. T., Sieli, R. J., Sugii, S., Summers, S. A. (2016). A Role for Ceramides, but Not Sphingomyelins, as Antagonists of Insulin Signaling and Mitochondrial Metabolism in C2C12 Myotubes. Journal of Biological Chemistry, 291 (46), 23978–23988. doi: http://doi.org/10.1074/jbc.m116.737684
- Powell, D. J., Turban, S., Gray, A., Hajduch, E., Hundal, H. S. (2004). Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochemical Journal, 382 (2), 619–629. doi: http://doi.org/10.1042/bj20040139
- Webb, L. M., Arnholt, A. T., Venable, M. E. (2009). Phospholipase D modulation by ceramide in senescence. Molecular and Cellular Biochemistry, 337 (1-2), 153–158. doi: http://doi.org/10.1007/s11010-009-0294-z
- Chen, F., Ghosh, A., Shneider, B. L. (2013). Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1. Journal of Lipid Research, 54 (2), 379–385. doi: http://doi.org/10.1194/jlr.m030304
- Ivey, R. A., Sajan, M. P., Farese, R. V. (2014). Requirements for Pseudosubstrate Arginine Residues during Autoinhibition and Phosphatidylinositol 3,4,5-(PO4)3-dependent Activation of Atypical PKC. Journal of Biological Chemistry, 289 (36), 25021–25030. doi: http://doi.org/10.1074/jbc.m114.565671
- Martin-Acebes, M. A., Merino-Ramos, T., Blazquez, A.-B., Casas, J., Escribano-Romero, E., Sobrino, F., Saiz, J.-C. (2014). The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis. Journal of Virology, 88 (20), 12041–12054. doi: http://doi.org/10.1128/jvi.02061-14
- Yager, E. J., Konan, K. V. (2019). Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses, 11 (10), 912. doi: http://doi.org/10.3390/v11100912
- Carpinteiro, A., Edwards, M. J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S. et. al. (2020). Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Reports Medicine, 1 (8), 100142. doi: http://doi.org/10.1016/j.xcrm.2020.100142
- Simonis, A., Schubert-Unkmeir, A. (2018). The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection. Biological Chemistry, 399 (10), 1135–1146. doi: http://doi.org/10.1515/hsz-2018-0200
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Galyna Storozhenko, Vitalina Kharchenko, Oksana Krasilnikova, Oksana Tkachenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.