Overview of concepts of the sphingolipid metabolism

Authors

DOI:

https://doi.org/10.15587/2519-8025.2021.234699

Keywords:

sphingolipids, ceramides, mitochondria, apoptosis, insulin resistance, viruses

Abstract

Sphingolipids are important components of the cell involved in the processes of apoptosis, inflammation, oncogenesis, aging, proliferation, differentiation and growth of cells, as well as in the stress-induced response of cells.

The aim. To study research literature for summarizing the new concepts of sphingolipids biochemical role in the development of various pathological conditions.

Materials and methods. The open sources of scientific literature were analyzed.

Results and discussion. According to the analyzed data, the occurrence of pathologies is associated with the sphingolipid imbalance in cells, and excessive accumulation of ceramides, while by preventing the accumulation of ceramides in cells, it is possible to prevent the appearance of cardiac, neurological and metabolic pathologies, including insulin resistance, heart disease (atherosclerosis, heart failure), as well as hepatic steatosis. Therefore, it is promising to search for drugs that can inhibit individual components of the metabolism of sphingolipids and prevent the development of pathology.

Conclusions. Sphingolipids are involved in numerous processes in cells, and changes in the balance of individual members of this class of lipids can play a crucial role in the development of pathological conditions. At the same time, the accumulated data on disorders of the sphingolipid metabolism in various diseases contribute to the development of drugs based on inhibition of the corresponding components of the metabolism of these lipids.

Author Biographies

Galyna Storozhenko, National University of Pharmacy

PhD, Assistant

Department of Biological Chemistry

Vitalina Kharchenko, V. N. Karazin Kharkiv National University

PhD, Associate Professor

Department of Biochemistry

Oksana Krasilnikova, National University of Pharmacy

PhD, Associate Professor

Department of Biological Chemistry

Oksana Tkachenko, National University of Pharmacy

Кандидатка фармацевтичних наук, асистентка

Кафедра біологічної хімії

References

  1. McQuiston, T., Haller, C., Poeta, M. (2006). Sphingolipids as Targets for Microbial Infections. Mini-Reviews in Medicinal Chemistry, 6 (6), 671–680. doi: http://doi.org/10.2174/138955706777435634
  2. Hannun, Y. A., Obeid, L. M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9 (2), 139–150. doi: http://doi.org/10.1038/nrm2329
  3. Patwardhan, G. A., Beverly, L. J., Siskind, L. J. (2015). Sphingolipids and mitochondrial apoptosis. Journal of Bioenergetics and Biomembranes, 48(2), 153–168. doi: http://doi.org/10.1007/s10863-015-9602-3
  4. Gomez-Muñoz, A., Presa, N., Gomez-Larrauri, A., Rivera, I.-G., Trueba, M., Ordoñez, M. (2016). Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Progress in Lipid Research, 61, 51–62. doi: http://doi.org/10.1016/j.plipres.2015.09.002
  5. Zhu, S., Xu, Y., Wang, L., Liao, S., Wang, Y., Shi, M. et. al. (2021). Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple‐negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways. Cancer Cell International, 21 (1). doi: http://doi.org/10.1186/s12935-020-01735-5
  6. Nganga, R., Oleinik, N., Ogretmen, B. (2018). Mechanisms of Ceramide-Dependent Cancer Cell Death. Sphingolipids in Cancer, 1–25. doi: http://doi.org/10.1016/bs.acr.2018.04.007
  7. Babenko, N. A., Garkavenko, V. V., Storozhenko, G. V., Timofiychuk, O. A. (2016). Role of acid sphingomyelinase in the age-dependent dysregulation of sphingolipids turnover in the tissues of rats. General Physiology and Biophysics, 35 (2), 195–205. doi: http://doi.org/10.4149/gpb_2015046
  8. Babenko, N. A., Kharchenko, V. S. (2013). Age-Related Changes in the Phospholipase D-Dependent Signal Pathway of Insulin in the Rat Neocortex. Neurophysiology, 45 (2), 120–127. doi: http://doi.org/10.1007/s11062-013-9346-9
  9. Babenko, N. A., Storozhenko, G. V. (2017). Role of ceramide in the aging-related decrease of cardiolipin content in the rat heart. Advances in Gerontology, 7 (3), 195–200. doi: http://doi.org/10.1134/s207905701703002x
  10. Grbčić, P., Car, E. P. M., Sedić, M. (2020). Targeting Ceramide Metabolism in Hepatocellular Carcinoma: New Points for Therapeutic Intervention. Current Medicinal Chemistry, 27 (39), 6611–6627. doi: http://doi.org/10.2174/0929867326666190911115722
  11. Kartal Yandım, M., Apohan, E., Baran, Y. (2012). Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemotherapy and Pharmacology, 71 (1), 13–20. doi: http://doi.org/10.1007/s00280-012-1984-x
  12. Edsfeldt, A., Dunér, P., Ståhlman, M., Mollet, I. G., Asciutto, G., Grufman, H. et. al. (2016). Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1132–1140. doi: http://doi.org/10.1161/atvbaha.116.305675
  13. Dinoff, A., Herrmann, N., Lanctôt, K. L. (2017). Ceramides and depression: A systematic review. Journal of Affective Disorders, 213, 35–43. doi: http://doi.org/10.1016/j.jad.2017.02.008
  14. Wang, G., Bieberich, E. (2018). Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Advances in Biological Regulation, 70, 51–64. doi: http://doi.org/10.1016/j.jbior.2018.09.013
  15. Field, B. C., Gordillo, R., Scherer, P. E. (2020). The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.569250
  16. Fang, Z., Pyne, S., Pyne, N. J. (2019). Ceramide and sphingosine 1-phosphate in adipose dysfunction. Progress in Lipid Research, 74, 145–159. doi: http://doi.org/10.1016/j.plipres.2019.04.001
  17. Li, N., Zhang, F. (2016). Implication of sphingosin-1-phosphate in cardiovascular regulation. Frontiers in Bioscience, 21 (7), 1296–1313. doi: http://doi.org/10.2741/4458
  18. Pralhada Rao, R., Vaidyanathan, N., Rengasamy, M., Mammen Oommen, A., Somaiya, N., Jagannath, M. R. (2013). Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. Journal of Lipids, 2013, 1–12. doi: http://doi.org/10.1155/2013/178910
  19. Apostolopoulou, M., Gordillo, R., Koliaki, C., Gancheva, S., Jelenik, T., De Filippo, E. et. al. (2018). Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care, 41 (6), 1235–1243. doi: http://doi.org/10.2337/dc17-1318
  20. Bajwa, H., Azhar, W. (2021). Niemann-Pick Disease. StatPearls. Treasure Island (FL): StatPearls Publishing.
  21. Schneider-Schaulies, J., Schneider-Schaulies, S. (2013). Viral Infections and Sphingolipids. Handbook of Experimental Pharmacology. Vienna: Springer, 321–340. doi: http://doi.org/10.1007/978-3-7091-1511-4_16
  22. Bezgovsek, J., Gulbins, E., Friedrich, S.-K., Lang, K. S., Duhan, V. (2018). Sphingolipids in early viral replication and innate immune activation. Biological Chemistry, 399 (10), 1115–1123. doi: http://doi.org/10.1515/hsz-2018-0181
  23. Hernández-Corbacho, M. J., Salama, M. F., Canals, D., Senkal, C. E., Obeid, L. M. (2017). Sphingolipids in mitochondria. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 1862 (1), 56–68. doi: http://doi.org/10.1016/j.bbalip.2016.09.019
  24. Kong, J. Y., Klassen, S. S., Rabkin, S. W. (2005). Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: A potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Molecular and Cellular Biochemistry, 278 (1-2), 39–51. doi: http://doi.org/10.1007/s11010-005-1979-6
  25. Novgorodov, S. A., Wu, B. X., Gudz, T. I., Bielawski, J., Ovchinnikova, T. V., Hannun, Y. A., Obeid, L. M. (2011). Novel Pathway of Ceramide Production in Mitochondria. Journal of Biological Chemistry, 286 (28), 25352–25362. doi: http://doi.org/10.1074/jbc.m110.214866
  26. Dyatlovitskaya, E. V. (2007). The role of lysosphingolipids in the regulation of biological processes. Biochemistry (Moscow), 72 (5), 479–484. doi: http://doi.org/10.1134/s0006297907050033
  27. Hannun, Y. A., Obeid, L. M. (2011). Many Ceramides. Journal of Biological Chemistry, 286 (32), 27855–27862. doi: http://doi.org/10.1074/jbc.r111.254359
  28. Bionda, C., Portoukalian, J., Schmitt, D., Rodriguez-Lafrasse, C., Ardail, D. (2004). Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochemical Journal, 382 (2), 527–533. doi: http://doi.org/10.1042/bj20031819
  29. Yu, J., Novgorodov, S. A., Chudakova, D., Zhu, H., Bielawska, A., Bielawski, J. et. al. (2007). JNK3 Signaling Pathway Activates Ceramide Synthase Leading to Mitochondrial Dysfunction. Journal of Biological Chemistry, 282 (35), 25940–25949. doi: http://doi.org/10.1074/jbc.m701812200
  30. Deng, X., Yin, X., Allan, R., Lu, D. D., Maurer, C. W., Haimovitz-Friedman, A. et. al. (2008). Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. elegans. Science, 322 (5898), 110–115. doi: http://doi.org/10.1126/science.1158111
  31. Yang, G., Badeanlou, L., Bielawski, J., Roberts, A. J., Hannun, Y. A., Samad, F. (2009). Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. American Journal of Physiology-Endocrinology and Metabolism, 297 (1), E211–E224. doi: http://doi.org/10.1152/ajpendo.91014.2008
  32. Park, M., Kaddai, V., Ching, J., Fridianto, K. T., Sieli, R. J., Sugii, S., Summers, S. A. (2016). A Role for Ceramides, but Not Sphingomyelins, as Antagonists of Insulin Signaling and Mitochondrial Metabolism in C2C12 Myotubes. Journal of Biological Chemistry, 291 (46), 23978–23988. doi: http://doi.org/10.1074/jbc.m116.737684
  33. Powell, D. J., Turban, S., Gray, A., Hajduch, E., Hundal, H. S. (2004). Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochemical Journal, 382 (2), 619–629. doi: http://doi.org/10.1042/bj20040139
  34. Webb, L. M., Arnholt, A. T., Venable, M. E. (2009). Phospholipase D modulation by ceramide in senescence. Molecular and Cellular Biochemistry, 337 (1-2), 153–158. doi: http://doi.org/10.1007/s11010-009-0294-z
  35. Chen, F., Ghosh, A., Shneider, B. L. (2013). Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1. Journal of Lipid Research, 54 (2), 379–385. doi: http://doi.org/10.1194/jlr.m030304
  36. Ivey, R. A., Sajan, M. P., Farese, R. V. (2014). Requirements for Pseudosubstrate Arginine Residues during Autoinhibition and Phosphatidylinositol 3,4,5-(PO4)3-dependent Activation of Atypical PKC. Journal of Biological Chemistry, 289 (36), 25021–25030. doi: http://doi.org/10.1074/jbc.m114.565671
  37. Martin-Acebes, M. A., Merino-Ramos, T., Blazquez, A.-B., Casas, J., Escribano-Romero, E., Sobrino, F., Saiz, J.-C. (2014). The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis. Journal of Virology, 88 (20), 12041–12054. doi: http://doi.org/10.1128/jvi.02061-14
  38. Yager, E. J., Konan, K. V. (2019). Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses, 11 (10), 912. doi: http://doi.org/10.3390/v11100912
  39. Carpinteiro, A., Edwards, M. J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S. et. al. (2020). Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Reports Medicine, 1 (8), 100142. doi: http://doi.org/10.1016/j.xcrm.2020.100142
  40. Simonis, A., Schubert-Unkmeir, A. (2018). The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection. Biological Chemistry, 399 (10), 1135–1146. doi: http://doi.org/10.1515/hsz-2018-0200

Downloads

Published

2021-06-30

How to Cite

Storozhenko, G., Kharchenko, V., Krasilnikova, O., & Tkachenko, O. (2021). Overview of concepts of the sphingolipid metabolism . ScienceRise: Biological Science, (2(27), 23–27. https://doi.org/10.15587/2519-8025.2021.234699

Issue

Section

Biological research