Pseudomonas aeruginosa as a priority group representative of bacteria with multiple antibiotic resistance
DOI:
https://doi.org/10.15587/2519-8025.2021.241238Keywords:
P. aeruginosa, antibiotic resistance, WHO, biofilm, antibiotics, multiple drug resistanceAbstract
The aim: the aim of the research is an analytical review of the scientific literature on Рseudomonas aeruginosa as a priority group representative of bacteria with multiple antibiotics resistance.
Materials and methods. The research was conducted by the method of scientific literature open source analysis: PubMed, Elsevier, electronic resources of the National Library named after V. I. Vernadsky and others.
Results. The problem of antibiotic resistance is rightly called the “apocalypse of the XXI century”.
P. aeruginosa bacteria are characterized by a very high natural ability to form resistant forms to antimicrobial drugs due to the formation of specific resistance genes, the ability to resist the entry of antibiotics into the cell or remove antibiotics from the cell, and form biofilms.
A characteristic feature of the epidemic and epizootic processes of P. aeruginosa, as an opportunistic ubiquitous microorganism is host-pathogenic interaction - the interaction of the pathogen with the host organism. The peculiarity of this bacterium is opportunism and long-term persistence in the body of the host and in the environment.
The global trend towards the spread of antibiotic-resistant gram-negative bacteria, including P. aeruginosa, underscores the need to develop comprehensive response strategies targeting all sectors of health.
Conclusions. Bacteria P. aeruginosa is classified in 1th Critical Group of the WHO list of resistant to antibiotics "priority pathogens". Among the main reasons that contribute to the emergence of resistance are irrational antibiotic therapy in both humans and animals, and the use of antibiotics as growth stimulants in animal husbandry.
While more R&D is vital, alone, it cannot solve the problem. To address resistance, there must also be better prevention of infections and appropriate use of existing antibiotics in humans and animals, as well as rational use of any new antibiotics that are developed in future.
New methods of combating antibiotic resistance and antibacterial substances, alternatives to antibiotics (biofilm-destroying drugs, antimicrobial peptides (AMP), bacteriophages, nanopreparations, etc.) can make a positive contribution to overcoming the multiple drug resistance of gram-negatives
References
- Novhorodova, O. Yu., Ushkalov, V. O., Mazur, T. V. (2017). The features of the epidemic and episootic situation of the Pseudomonas Aeruginosa. Naukovi dopovidi NUBiP Ukrainy, 3 (67).
- Pro zatverdzhennia Natsionalnoho planu dii shchodo borotby iz stiikistiu do protymikrobnykh preparativ (2019). Rozporiadzhennia Kabinetu Ministriv Ukrainy No. 116-r. 06.03.2019. Available at: https://zakon.rada.gov.ua/laws/card/116-2019-%D1%80
- Romaniuk, L. B., Kravets, N. Ia., Klimniuk, S. І., Kopcha, V. S., Dronova, O. I. (2019). Antibiotic-resistance of opportunistic microorganisms: topicality, conditions of emergency, ways of overcome. Іnfektsіinі khvorobi, 4 (98), 63–71. doi: http://doi.org/10.11603/1681-2727.2019.4.10965
- Shyrobokov, V. P. (2011). Medychna mikrobiolohiia, virusolohiia, imunolohiia. Vinnytsia: Nova knyha, 952.
- Klymniuk, S. I., Romaniuk, L. B., Kravets, N. Ya. (2019). Mikrobnyi peizazh rotohlotky khvorykh na kir ditei ta antybiotykochutlyvist vydilenykh shtamiv. Dovkillia i zdorovia. Ternopil: TDMU Ukrmedknyha, 122–123.
- Beliakov, V. D., Riapis, L. A., Iliukhin, V. I. (1990). Psevdomonady i psevdomonozy. Moscow: Meditsina, 223.
- Salimi, H., Owlia, P., Yakhchali, B., Rastegar L, A. (2009). Drug Susceptibility and Molecular Epidemiology of Pseudomonas aeruginosa Isolated in a Burn Unit. American Journal of Infectious Diseases, 5 (4), 301–306. doi: http://doi.org/10.3844/ajidsp.2009.301.306
- Zon, H. A., Vashchyk, Ye. V. Stets, V. V. (2011). Metodychni rekomendatsii z diahnostyky, zakhodiv borotby ta profilaktyky psevdomonozu ptytsi. Sumy.
- WHO publishes list of bacteria for which new antibiotics are urgently needed (2017). Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
- Sikkema, R., Koopmans, M. (2016). One Health training and research activities in Western Europe. Infection Ecology & Epidemiology, 6 (1), 33703. doi: http://doi.org/10.3402/iee.v6.33703
- Animal Production Food Safety. World Organization for Animal Health (OIE). Available at: https://www.oie.int/en/what-we-do/global-initiatives/food-safety/oie-activities/
- Food-borne zoonoses (2014). European Food Safety Authority. Available at: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetfoodbornezoonoses2014_en.pdf
- Rabinowitz, P. M., Natterson-Horowitz, B. J., Kahn, L. H., Kock, R., Pappaioanou, M. (2017). Incorporating one health into medical education. BMC Medical Education, 17 (1). doi: http://doi.org/10.1186/s12909-017-0883-6
- Sadikot, R. T., Blackwell, T. S., Christman, J. W., Prince, A. S. (2005). Pathogen–Host Interactions inPseudomonas aeruginosaPneumonia. American Journal of Respiratory and Critical Care Medicine, 171 (11), 1209–1223. doi: http://doi.org/10.1164/rccm.200408-1044so
- Hong, D. J., Bae, I. K., Jang, I.-H., Jeong, S. H., Kang, H.-K., Lee, K. (2015). Epidemiology and Characteristics of Metallo-β-Lactamase-ProducingPseudomonas aeruginosa. Infection & Chemotherapy, 47 (2), 81–97. doi: http://doi.org/10.3947/ic.2015.47.2.81
- ECDC Surveillance Atlas – Antimicrobial resistance. Available at: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4
- World leaders and experts call for significant reduction in the use of antimicrobial drugs in global food systems (2012). Available at: https://www.who.int/news/item/24-08-2021-world-leaders-and-experts-call-for-significant-reduction-in-the-use-of-antimicrobial-drugs-in-global-food-systems
- Salimi, H., Owlia, P., Yakhchali, B., Rastegar L, A. (2009). Drug Susceptibility and Molecular Epidemiology of Pseudomonas aeruginosa Isolated in a Burn Unit. American Journal of Infectious Diseases, 5 (4), 301–306. doi: http://doi.org/10.3844/ajidsp.2009.301.306
- Melezhik, I. A., IAvorskaia, N. V., SHepelevich, V. V., Kokozei, V. N. (2013). Rol bioplenok Rseudomonas aeruginosa v razvitii endogennykh infektsii. Biulleten Orenburgskogo nauchnogo tsentra UrO RAN, 3. Available at: http://elmag.uran.ru:9673/magazine/Numbers/2013-3/Articles/5Melezhik(2013-3).pdf
- Yanagihara, K., Tomono, K., Sawai, T., Kuroki, M., Kaneko, Y., Ohno, H., Kohno, S. J. et. al. (2000). Combination therapy for chronic Pseudomonas aeruginosa respiratory infection associated with biofilm formation. Journal of Antimicrobial Chemotherapy, 46 (1), 69–72. doi: http://doi.org/10.1093/jac/46.1.69
- Grishin, A. V., Krivozubіv, M. S., Kariagina, A. S., Gіnzburg, A. L. (2015). Lektiny Pseudomonas aeruginosa kak misheni dlia novykh antibakterialnykh soedinenii. ACTA NATURAE, 7 (2 (25)), 32–45.
- Minukhin, V. V., Zviahintseva, T. V. (2014). Antybiotykorezystentnist. Suchasnyi pohliad na problemu ta shliakhy podolannia. Kharkiv: KhNMU, 16.
- Baturin, V. A., Schetinin, E. V, Demidenko, I. F., Korableva, O. A., Baturina, M. V., Savchenko, T. A., Kunitsyna, E. A. (2014). Biulleten antibiotikorezistentnosti respiratornykh patogenov v OITAR g. Stavropolia. Stavropol: Izd. StGMU.
- Abaev, Iu. K. (2006). Vnutribolnichnaia infektsiia v neonatologii. Meditsinskie novosti, 11, 37–43.
- Vashchyk, Ye. V. (2019). Teoretychno-eksperymentalne obgruntuvannia systemy kontroliu asotsiiovanoho perebihu psevdomonozu ptytsi. Kharkiv, 42.
- Harkavenko, T. O., Nevolko, O. M., Ordynska, D. O., Mezhenska, N. A., Kozytska, T. H. (2015). Antybiotykorezystentnist mikroorhanizmiv. Veterynarna medytsyna Ukrainy, 3 (229), 13–16.
- Markelova, N. N., Semenova, E. F. (2018). Possible Ways to Overcome Antibiotic Resistance of Nosocomial Pathogens Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. Antibiotics and Chemotherapy, 63 (11-12), 45–54.
- Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J., Stewart, P. S. (2003). Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin. Antimicrobial Agents and Chemotherapy, 47 (1), 317–323. doi: http://doi.org/10.1128/aac.47.1.317-323.2003
- Clatworthy, A. E., Pierson, E., Hung, D. T. (2007). Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology, 3 (9), 541–548. doi: http://doi.org/10.1038/nchembio.2007.24
- Avichezer, D., Katcoff, D. J., Garber, N. C., Gilboa-Garber, N. (1992). Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. Journal of Biological Chemistry, 267 (32), 23023–23027. doi: http://doi.org/10.1016/s0021-9258(18)50050-8
- Gilboa-Garber, N., Katcoff, D. J., Garber, N. C. (2000). Identification and characterization of Pseudomonas aeruginosaPA-IIL lectin gene and protein compared to PA-IL. FEMS Immunology & Medical Microbiology, 29 (1), 53–57. doi: http://doi.org/10.1111/j.1574-695x.2000.tb01505.x
- Yegorova, O. N. (2010). Pseudomonas aeruginosa-induced Infections in the Intensive Care Unit. General Reanimatology, 6 (5), 51–54. doi: http://doi.org/10.15360/1813-9779-2010-5-51
- Reshedko, G. K., Riabova, E. L. Krechikova, O. I. (2007). Rezistentnost k antibiotikam gramotritsatelnykh vozbuditelei nozokomialnykh infektsii v ORIT. Klin. mikrobiologiia i antimikrob. khimioterapiia, 2, 163–179.
- Wang, J., Hu, B., Xu, M., Yan, Q., Liu, S., Zhu, X. et. al. (2006). Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. International Journal of Molecular Medicine, 17 (2), 309–317. doi: http://doi.org/10.3892/ijmm.17.2.309
- Li, X., Z. Zhang, L., McKay, G. A., Poole, K. (2003). Role of the acetyltransferase AAC (6`)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 51 (4), 803–811. doi: http://doi.org/10.1093/jac/dkg148
- Pucci, M. J., Bush, K. (2013). Investigational Antimicrobial Agents of 2013. Clinical Microbiology Reviews, 26 (4), 792–821. doi: http://doi.org/10.1128/cmr.00033-13
- Rai, M. K., Deshmukh, S. D., Ingle, A. P., Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112 (5), 841–852. doi: http://doi.org/10.1111/j.1365-2672.2012.05253.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Yevheniia Vashchyk, Dmytro Morozenko, Nataliia Seliukova, Andriy Zakhariev, Roman Dotsenko, Andrii Zemlianskyi, Olga Shapovalova, Ekaterina Dotsenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.