Accumulation of heavy metals in leaves of tree species on the ash and slag dumps of the Burshtyn Thermal Power Plant

Authors

DOI:

https://doi.org/10.15587/2519-8025.2023.288085

Keywords:

devastated lands, heavy metals, HMs accumulation, indices of accumulation, phytoremediation

Abstract

Thermal power plant (TPP) facilities are considered as one of the major reasons for environmental pollution. Ash and slag dumps as a special construction for storage of combustion wastes of TPPs are recognized as sources of heavy metals (HMs) contamination for surrounding ecosystems. The present study is the first report of analyzing HMs contamination of the ash and slag dumps of the Burshtyn TPP.

The aim of the study is to estimate the content of HMs in the technogenic substrates of ash and slag dumps and investigate soil-plant interactions through analyzing potential of HMs accumulation in the leaves of native dominant woody species.

Materials and methods of research. Soil sampling was carried out in the period of July 2021 at previously determined points. The most common woody species (Populus tremula L., Betula pendula Roth., Salix caprea L.) were selected for testing of HMs accumulation abilities. Samples of plants and soil were subjected to an atomic absorption spectrometer for being analyzed for heavy metals: Cd, Zn, Ni, Cu, Pb, Mn and Fe.

Results of research and discussion. The results showed that the substrates of ash and slag dumps of the Burshtyn TPP were mainly contaminated by lead, copper and cadmium. All tested species concentrated high amounts of magnesium, iron, zinc and low concentration of cadmium. Bioaccumulation factor reflected the highest abilities of accumulation of zinc in all tested species and low level of bioaccumulation of cadmium. The highest index of biochemical activity showed Betula pendula. Salix caprea were found as a promising species for remediation due to intensive accumulation of such elements like cadmium, lead, copper, zinc and nickel.

Conclusions and prospects for further research. We consider plant organisms particularly useful for analyzing HMs accumulation as they can provide a cost-effective and long-term approach for bioindication and monitoring HMs pollution. Moreover, vegetation covers could be used for remediation of HMs contaminated sites

Author Biographies

Uliana Semak, Vasyl Stefanyk Precarpathian National University

Postgraduate Student

Department of Biology and Ecology

Mylenka Myroslava, Vasyl Stefanyk Precarpathian National University

PhD, Associate Professor, Head of Department

Department of Biology and Ecology

References

  1. Kovaliv, L. M. (2013). Environmental problems of thermal power. Naukovyi visnyk NLTU Ukrainy, 23 (18), 57–61.
  2. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Kameneva, I., Radchenko, O. et al. (2021). Effect of Power Plant Ash and Slag Disposal on the Environment and Population Health in Ukraine. Journal of Health and Pollution, 11 (31). doi: https://doi.org/10.5696/2156-9614-11.31.210910
  3. Mylenka, M. M. (2009). Bioindykatsiina otsinka ekolohichnoho stanu Burshtynskoi urboekosystemy. Dnipropetrovsk: Dnipropetrovskyi natsionalnyi universytet imeni O. Honchara, 20.
  4. Pandey, V. C., Prakash, P., Bajpai, O., Kumar, A., Singh, N. (2014). Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 22 (4), 2776–2787. doi: https://doi.org/10.1007/s11356-014-3517-0
  5. Maiti, S. K., Kumar, A., Ahirwal, J., Das, R. (2016). Comparative study on bioaccumulation and translocation of metals in Bermuda grass (Cynodon Dactylon) naturally growing on fly ash lagoon and topsoil. Applied ecology and environmental research, 14 (1). doi: https://doi.org/10.15666/aeer/1401_001012
  6. Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. doi: https://doi.org/10.1016/j.ecoenv.2021.112368
  7. Alieksieieva, T. M. (2014). Bioindication as a method of ecological assessment of natural environment. Visnyk KrNU imeni Mykhaila Ostrohradskoho, 2 (85), 166–171.
  8. Demura, V. I., Hotvianska, V. O., Pavlychenko, A. V. (2013). Heavy metal distribution in and accumulation by plants and soils in the waste dump areas. Heotekhnichna mekhanika, 111, 23–29.
  9. Mehes-Smith, M., Nkongolo, K. K., Narendrula, R., Cholewa, E. (2013). Mobility of heavy metals in plants and soil: a case study from a mining region in Canada. American Journal of Environmental Sciences, 9 (6), 483–493. doi: https://doi.org/10.3844/ajessp.2013.483.493
  10. Yoon, J., Cao, X., Zhou, Q., Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368 (2-3), 456–464. doi: https://doi.org/10.1016/j.scitotenv.2006.01.016
  11. Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., Zhou, Y. (2013). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8 (3), 394–404. doi: https://doi.org/10.1007/s11783-013-0602-4
  12. Baranov, V. I., Huz, M. M., Havryliak, M. S., Vashchuk, S. P. (2010). Investigation of the heavy metals contents in the plants on the devastated soil in the result of coal mines rock debris. Naukovyi visnyk NLTU Ukrainy, 20 (1), 68–72.
  13. Fetsiukh, A., Bunio, L., Patsula, O., Terek, O. (2020). Accumulation of heavy metals by salix viminalis plants under growing at the substrate from stebnyk tailings. Visnyk of Lviv University. Biological Series, 81, 96–110. doi: https://doi.org/10.30970/vlubs.2019.81.11
  14. Kozlovskyi, V., Romaniuk, N., Terek, O., Chonka I., Kolesnyk, O., Bolashi, S., Boiko, N. (2005). Heavy metals in soils and plants of Tisza river basin. Visnyk Lvivskoho universytetu. Seriia biolohichna, 40, 35–50.
  15. Lutsyshyn, O. H., Teslenko, I. K., Bykov, V. V. (2014). Survival strategy of Bolle’s poplar (Populus pyramidalis Ro z.) wood plants under urbotechnogenic pollution conditions. Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 156–163.
  16. Hryshko, V. M., Piskova O. M. (2014). Peculiarities of accumulation of heavy metals from aerogenic industrial emissions in leaves of arboreal plants. Introduktsiia roslyn, 1, 93–100.
  17. Tran, A., Nkongolo, K., Mehes Smith, M., Narendrula, R., Spiers, G., Beckett, P. (2014). Heavy metal analysis in Red oak (Quercus rubra) populations from a mining region in Northern Ontario (Canada): Effect of soil liming and analysis of genetic variation. American journal of environmental sciences, 10, 363–373. doi: https://doi.org/10.3844/ajessp.2014.363.373
  18. Zhytska, L. I. (2011). Roslynnyi pokryv urbosystemy yak indykator stanu edafotopiv ta atmosfernykh zabrudnen (na prykladi m. Cherkasy). Kyiv: Derzhavna ekolohichna akademiia pisliadyplomnoi osvity, 22.
  19. Hnieushev V.O. (2013). Formuvannia ta rozrobka tekhnohennykh rodovyshch. Rivne: Volynski oberehy, 152.
  20. Zvit z otsinky vplyvu na dovkillia naroshchuvannia zolovidvaliv No. 1-2 (rekonstruktsiia) VP «Burshtynska TES» AT «DTEK ZAKhIDENERHO» (2019). Restratsiinyi nomer 2019262788. TOV «Tsentr ekolohii ta rozvytku novykh tekhnolohii». Kyiv.
  21. DSTU 4770 (1, 2, 3, 4, 6, 7, 9): 2007. (2009). Yakist gruntu. Vyznachennia vmistu rukhomykh spoluk marhantsiu v grunti v bufernii amoniino-atsetatnii vytiazhtsi z rN 4,8 metodom atomno-absorbtsiinoi spektrofotometrii. Kyiv: Derzhspozhyvstandart Ukrainy.
  22. HOST 30178-96. (1996). Syrovyna i produkty kharchovi. Atomno-absorbtsiinyi metod vyznachennia toksychnykh elementiv.
  23. Mylenka, M. M. (2009). Tsytohenetychna otsinka stanu gruntiv Burshtynskoi urboekosystemy. Visnyk Lvivskoho universytetu. Seriia biolohichna, 49, 128–137.
  24. Nespliak, O. S. (2011). Ekolohichni osoblyvosti formuvannia flory i roslynnosti zoloshlakovidvaliv Burshtynskoi teplovoi elektrostantsii ta yikh vykorystannia v rekultyvatsii. Dnipropetrovsk: Dnipropetrovskyi natsionalnyi universytet imeni O. Honchara, 23.
  25. Prister, B. S., Sozinov, O. O. (Eds.) (1994). Metodyka sutsilnoho gruntovo-ahrokhimichnoho monitorynhu silskohospodarskykh uhid Ukrainy. Kyiv: MSHiP, 162.
  26. Samchuk, A. I., Grodzinskaya, G. A., Vovk, K. V. (2015). Research on accumulation of macro- and microelements in leaves of trees in Kyiv megalopolis. Ecology and Noospherology, 26 (1-2), 34–43. doi: https://doi.org/10.15421/031504
  27. Alieksieieva, T. M. (2014). Gruntovo-roslynnyi pokryv yak pokaznyk zabrudnennia atmosfernoho povitria vazhkymy metalamy. Ukrainskyi hidrometeorolohichnyi zhurnal, 14, 16–22.
  28. Nirola, R., Megharaj, M., Palanisami, T., Aryal, R., Venkateswarlu, K., Ravi Naidu. (2015). Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization. Journal of Sustainable Mining, 14 (3), 115–123. doi: https://doi.org/10.1016/j.jsm.2015.11.001
  29. Baker, A. J. M., Brooks, R. R. (1989). Terrestrial Higher Plants which Hyperaccumulate Metallic Elements. A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery, 1, 81–126.
  30. Vovk, K. V. (2018). Heokhimiia mikroelementiv v ob’iektakh dovkillia kyivskoi ahlomeratsii. Kyiv: Instytut heokhimii, mineralohii ta rudoutvorennia im. M. P. Semenenka NAN Ukrainy, 180.
  31. Аdler, A. (2007). Accumulation of Elements in Salix and Other Species Used in Vegetation Filters with Focus on Wood Fuel Quality. Uppsala: Swedish University of Agricultural Sciences.
  32. Mundała, P., Szwalec, A., Kędzior, R. (2017). Accumulation of selected heavy metals in willow shoots (Salix viminalis L.) cultivated in the neighbourhood of a coal ash and slag landfill. Infrastruktura i Ekologia Terenów Wiejskich, III (1), 1043–1051. doi: https://doi.org/10.14597/infraeco.2017.3.1.080
Accumulation of heavy metals in leaves of tree species on the ash and slag dumps of the burshtyn Thermal Power Plant

Downloads

Published

2023-09-30

How to Cite

Semak, U., & Myroslava, M. (2023). Accumulation of heavy metals in leaves of tree species on the ash and slag dumps of the Burshtyn Thermal Power Plant. ScienceRise: Biological Science, (3(36), 22–27. https://doi.org/10.15587/2519-8025.2023.288085

Issue

Section

Biological research