Evolution of insulin production technologies: from historical discoveries of the molecule structure to modern innovations

Authors

DOI:

https://doi.org/10.15587/2519-8025.2025.349033

Keywords:

Insulin, recombinant DNA technologies, biosimilars, insulin analogs, oral delivery systems

Abstract

The aim of the study is to assess the current state of the pharmaceutical market for insulins, including historical stages of studying the structure of the insulin molecule and its properties, which formed the basis for the development of commercial preparations and analogs, as well as analysis of promising biotechnological approaches to improve the treatment of diabetes mellitus (DM).

Materials and methods. The materials used were scientific publications, official websites of manufacturing companies, FDA and EMA databases, clinical trial registries. Methods of content analysis, comparative, analytical, and generalization of information were applied.

Results and discussion. The results indicate that recombinant insulin preparations (from rapid-acting analogs to long-acting ones) provide better glycemic control but are limited by high development and production costs. Innovations include combined preparations with GLP-1 agonists, glucose-sensitive insulins, and oral forms, which face bioavailability challenges.

Conclusions. The analysis points to the evolution of insulin production technologies from determining the molecule structure and implementing recombinant DNA technologies, which enabled the transition to human recombinant preparations and analogs. The market offers preparations with various profiles (from ultra-rapid to ultra-long), including biphasic mixtures, improving glycemic control. Combinations of insulin with GLP-1 agonists, amylin analogs (pramlintide), and the development of glucose-sensitive insulins have potential for personalized therapy but are limited by technical challenges (stability, biocompatibility). Oral forms face low bioavailability, but the use of nanotechnology and effective excipients opens prospects for improving accessibility and effectiveness of DM treatment

Author Biographies

Olha Kaliuzhnaia, National University of Pharmacy

PhD, Associate Professor

Department of Biotechnology

Natalya Khokhlenkova, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Biotechnology

References

  1. International Diabetes Federation. Available at: https://diabetesatlas.org/
  2. Pro zatverdzhennia Poriadku provedennia klinichnykh vyprobuvan likarskykh zasobiv ta ekspertyzy materialiv klinichnykh vyprobuvan i Typovoho polozhennia pro komisii z pytan etyky: Nakaz Ministerstva okhorony zdorovia Ukrainy No. 690. 23.09.2009. Availabe at: https://moz.gov.ua/uk/u-piv-miljona-ukrainciv-diagnostovano-cukrovij-diabet-u-2023-roci
  3. Kasinathan, D., Guo, Z., Sarver, D. C., Wong, G. W., Yun, S., Michels, A. W. et al. (2024). Cell-Surface ZnT8 Antibody Prevents and Reverses Autoimmune Diabetes in Mice. Diabetes, 73 (5), 806–818. https://doi.org/10.2337/db23-0568
  4. Baker, D. E. (2023). Teplizumab. Hospital Pharmacy, 58 (6), 549–556. https://doi.org/10.1177/00185787231160431
  5. Monzani, P. S., Sangalli, J. R., Sampaio, R. V., Guemra, S., Zanin, R., Adona, P. R. et al. (2024). Human proinsulin production in the milk of transgenic cattle. Biotechnology Journal, 19 (3). https://doi.org/10.1002/biot.202300307
  6. Beck, R. W., Bailey, R. J., Klein, K. R., Aleppo, G., Levy, C. J., Diner, J. et al. (2025). Inhaled Technosphere Insulin Plus Insulin Degludec for Adults with Type 1 Diabetes: The INHALE-3 Extension Study. Diabetes Technology & Therapeutics, 27 (3), 170–178. https://doi.org/10.1089/dia.2024.0582
  7. Gaddas, M., Saida, I. B., Saad, H. B. (2025). Twenty years of inhaled insulin: promise, setbacks, and future directions. EXCLI Journal, 28 (24), 573–577. https://doi.org/10.17179/excli2025-8260
  8. Silva, I. B. B., Kimura, C. H., Colantoni, V. P., Sogayar, M. C. (2022). Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Research & Therapy, 13 (1). https://doi.org/10.1186/s13287-022-02977-y
  9. Kumar, D., Tanwar, R. (2024). World’s first: stem cell therapy reverses diabetes. Stem Cell Research & Therapy, 15 (1). https://doi.org/10.1186/s13287-024-04036-0
  10. Zhang, T., Tang, J. Z., Fei, X., Li, Y., Song, Y., Qian, Z., Peng, Q. (2021). Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharmaceutica Sinica B, 11 (3), 651–667. https://doi.org/10.1016/j.apsb.2020.08.016
  11. Kaliuzhnaia, O. S., Khokhlenkova, N. V., Panenko, M. V. (2024). The analysis of recombinant insulin production technologies. News of Pharmacy, 108 (2), 25–36. https://doi.org/10.24959/nphj.24.158
  12. Alyas, Ej., Rafiq, A., Amir, H., Khan, S. U., Sultana, T., Ali, A., Hameed, A., Ahmad, I., Kazmi, A., Sajid, T., Ahmad, A. (2021). Human Insulin: History, Recent Advances, and Expression Systems for Mass Production. Biomedical Research and Therapy, 8 (9), 4540–4561. https://doi.org/10.15419/bmrat.v8i9.692
  13. Artasensi, A., Pedretti, A., Vistoli, G., Fumagalli, L. (2020). Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules, 25 (8), 1987. https://doi.org/10.3390/molecules25081987
  14. Brown, H., Sanger, F., Kitai, R. (1955). The structure of pig and sheep insulins. Biochemical Journal, 60 (4), 556–565. https://doi.org/10.1042/bj0600556
  15. Stretton, A. O. W. (2002). The First Sequence: Fred Sanger and Insulin. Genetics, 162 (2), 527–532. https://doi.org/10.1093/genetics/162.2.527
  16. Halban, P. A. (1991). Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic Beta cell. Diabetologia, 34 (11), 767–778. https://doi.org/10.1007/bf00408349
  17. Steiner, D. F., James, D. E. (1992). Cellular and molecular biology of the Beta cell. Diabetologia, 35 (S2), S41–S48. https://doi.org/10.1007/bf00586278
  18. Weiss, M., Steiner, D. F., Philipson, L. H.; Feingold, K. R., Ahmed, S. F., Anawalt, B. et al. (Eds.) (2014). Insulin biosynthesis, secretion, structure, and structure-activity relationships. Endotext. South Dartmouth: MDText.com, Inc. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279029/
  19. Saisho, Y. (2016). Postprandial C-Peptide to Glucose Ratio as a Marker of β Cell Function: Implication for the Management of Type 2 Diabetes. International Journal of Molecular Sciences, 17 (5), 744. https://doi.org/10.3390/ijms17050744
  20. Szukiewicz, D. (2023). Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. International Journal of Molecular Sciences, 24 (12), 9818. https://doi.org/10.3390/ijms24129818
  21. Gorai, B., Vashisth, H. (2022). Progress in Simulation Studies of Insulin Structure and Function. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.908724
  22. Galloway, J., Chance, R. (1994). Improving Insulin Therapy: Achievements and Challenges. Hormone and Metabolic Research, 26 (12), 591–598. https://doi.org/10.1055/s-2007-1001766
  23. Bußmann, A. B., Grünerbel, L. M., Durasiewicz, C. P., Thalhofer, T. A., Wille, A., Richter, M. (2021). Microdosing for drug delivery application – A review. Sensors and Actuators A: Physical, 330, 112820. https://doi.org/10.1016/j.sna.2021.112820
  24. Giugliano, D., Scappaticcio, L., Longo, M., Caruso, P., Maiorino, M. I., Bellastella, G., Esposito, K. (2021). Simplification of complex insulin therapy: a story of dogma and therapeutic resignation. Diabetes Research and Clinical Practice, 178, 108958. https://doi.org/10.1016/j.diabres.2021.108958
  25. Brange, J., Ribel, U., Hansen, J. F., Dodson, G., Hansen, M. T., Havelund, S. et al. (1988). Monomeric insulins obtained by protein engineering and their medical implications. Nature, 333 (6174), 679–682. https://doi.org/10.1038/333679a0
  26. Bakaysa, D. L., Radziuk, J., Havel, H. A., Brader, M. L., Li, S., Dodd, S. W. et al. (1996). Physicochemical basis for the rapid time‐action of LysB28ProB29‐insulin: Dissociation of a protein‐ligand complex. Protein Science, 5 (12), 2521–2531. https://doi.org/10.1002/pro.5560051215
  27. Birnbaum, D. T., Kilcomons, M. A., DeFelippis, M. R., Beals, J. M. (1997). Assembly and Dissociation of Human Insulin and LysB28ProB29-Insulin Hexamers: A Comparison Study. Pharmaceutical Research, 14 (1), 25–36. https://doi.org/10.1023/a:1012095115151
  28. Purple Book Database of Licensed Biological Products: U.S. Food and Drug Administration. Available at: https://purplebooksearch.fda.gov/
  29. Download medicine data (2024). European Medicines Agency. Available at: https://www.ema.europa.eu/en/medicines/download-medicine-data
  30. Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N. et al. (1969). Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature, 224 (5218), 491–495. https://doi.org/10.1038/224491a0
  31. Pekar, A. H., Frank, B. H. (1972). Conformation of proinsulin. Comparison of insulin and proinsulin self-association at neutral pH. Biochemistry, 11(22), 4013–4016. https://doi.org/10.1021/bi00772a001
  32. Owens, D. R. (2011). Insulin Preparations with Prolonged Effect. Diabetes Technology & Therapeutics, 13 (S1), S-5–S-14. https://doi.org/10.1089/dia.2011.0068
  33. Berenson, D. F., Weiss, A. R., Wan, Z., Weiss, M. A. (2011). Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering. Annals of the New York Academy of Sciences, 1243 (1), 40–54. https://doi.org/10.1111/j.1749-6632.2012.06468.x
  34. Maxwell, L. C., Bischoff, F. (1935). Augmentation of the physiologic response to insulin. American Journal of Physiology-Legacy Content, 112 (1), 172–175. https://doi.org/10.1152/ajplegacy.1935.112.1.172
  35. Scott, D. A., Fisher, A. M. (1935). The effect of zinc salts on the action of insulin. The Journal of Pharmacology and Experimental Therapeutics, 55 (2), 206–221. https://doi.org/10.1016/s0022-3565(25)04174-6
  36. Blundell, T. L., Dodson, G. G., Dodson, E., Hodgkin, D. C., Vijayan, M. (1971). X-Ray Analysis and the Structure of Insulin. Proceedings of the 1970 Laurentian Hormone Conference, 27, 1–40. https://doi.org/10.1016/b978-0-12-571127-2.50025-0
  37. Hodgkin, D. C. (1971). X rays and the structures of insulin. British Medical Journal, 4 (5785), 447–451. https://doi.org/10.1136/bmj.4.5785.447
  38. Jarosinski, M. A., Dhayalan, B., Chen, Y.-S., Chatterjee, D., Varas, N., Weiss, M. A. (2021). Structural principles of insulin formulation and analog design: A century of innovation. Molecular Metabolism, 52, 101325. https://doi.org/10.1016/j.molmet.2021.101325
  39. Phillips, N. B., Wan, Z., Whittaker, L., Hu, S.-Q., Huang, K., Hua, Q. et al. (2010). Supramolecular Protein Engineering. Journal of Biological Chemistry, 285 (16), 11755–11759. https://doi.org/10.1074/jbc.c110.105825
  40. Vashisth, H. (2015). Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family. Membranes, 5 (1), 48–83. https://doi.org/10.3390/membranes5010048
  41. Brader, M. L., Kaarsholm, N. C., Dunn, M. F. (1990). The R-state proinsulin and insulin hexamers mimic the carbonic anhydrase active site. Journal of Biological Chemistry, 265 (26), 15666–15670. https://doi.org/10.1016/s0021-9258(18)55450-8
  42. Rahuel-Clermont, S., French, C. A., Kaarsholm, N. C., Dunn, M. F. (1997). Mechanisms of Stabilization of the Insulin Hexamer through Allosteric Ligand Interactions. Biochemistry, 36 (19), 5837–5845. https://doi.org/10.1021/bi963038q
  43. Kosinová, L., Veverka, V., Novotná, P., Collinsová, M., Urbanová, M., Moody, N. R. et al. (2014). Insight into the Structural and Biological Relevance of the T/R Transition of the N-Terminus of the B-Chain in Human Insulin. Biochemistry, 53 (21), 3392–3402. https://doi.org/10.1021/bi500073z
  44. Blader, M. L., Dunn, M. F. (1991). Insulin hexamers: new conformations and applications. Trends in Biochemical Sciences, 16, 341–345. https://doi.org/10.1016/0968-0004(91)90140-q
  45. Roy, M., Brader, M. L., Lee, R. W., Kaarsholm, N. C., Hansen, J. F., Dunn, M. F. (1989). Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. Journal of Biological Chemistry, 264 (32), 19081–19085. https://doi.org/10.1016/s0021-9258(19)47269-4
  46. Berchtold, H., Hilgenfeld, R. (1999). Binding of phenol to R6 insulin hexamers. Biopolymers, 51 (2), 165–172. https://doi.org/10.1002/(sici)1097-0282(1999)51:2<165::aid-bip6>3.0.co;2-x
  47. Hallas-Møller, K., Petersen, K., Schlichtkrull, J. (1952). Crystalline and Amorphous Insulin-Zinc Compounds with Prolonged Action. Science, 116 (3015), 394–398. https://doi.org/10.1126/science.116.3015.394
  48. Hallas-Mø, K. (1956). The Lente Insulins. Diabetes, 5 (1), 7–14. https://doi.org/10.2337/diab.5.1.7
  49. Schlichtkrull, J., Munck, O., Jersild, M. (1965). Insulin Rapitard and Insulin Actrapid. Acta Medica Scandinavica, 177 (1), 103–113. https://doi.org/10.1111/j.0954-6820.1965.tb01811.x
  50. Humulin® Therapies. Eli Lilly and Company. Available at: https://medical.lilly.com/us/products/medical-information/diabetes/humulin
  51. Our medicines. Diabetes medications. Novo Nordisk. Available at: https://www.novonordisk.com/our-products/our-medicines.html
  52. Vetsulin. Merck Animal Health. Available at: https://www.merck-animal-health-usa.com/pet-owners/vetsulin/
  53. Bentley, G., Dodson, G., Lewitova, A. (1978). Rhombohedral insulin crystal transformation. Journal of Molecular Biology, 126 (4), 871–875. https://doi.org/10.1016/0022-2836(78)90026-8
  54. Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D. et al. (1989). Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature, 338 (6216), 594–596. https://doi.org/10.1038/338594a0
  55. Hagedorn, H. C., Jensen, B. N., Krarup, N. B., Wodstrup, I. (1936). Protamine Insulinate. Journal of the American Medical Association, 106 (3), 177–180. https://doi.org/10.1001/jama.1936.02770030007002
  56. Scott, D. A., Fisher, A. M. (1936). Studies on insulin with protamine. The Journal of Pharmacology and Experimental Therapeutics, 58 (1), 78–92. https://doi.org/10.1016/s0022-3565(25)09793-9
  57. Yip, C. M., Brader, M. L., Frank, B. H., DeFelippis, M. R., Ward, M. D. (2000). Structural Studies of a Crystalline Insulin Analog Complex with Protamine by Atomic Force Microscopy. Biophysical Journal, 78 (1), 466–473. https://doi.org/10.1016/s0006-3495(00)76609-4
  58. Kurtzhals, P., Havelund, S., Jonassen, I., Kiehr, B., Larsen, U. D., Ribel, U., Markussen, J. (1995). Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochemical Journal, 312 (3), 725–731. https://doi.org/10.1042/bj3120725
  59. Peters, T. (1985). Serum Albumin. Advances in Protein Chemistry, 37, 161–245. https://doi.org/10.1016/s0065-3233(08)60065-0
  60. Kragh-Hansen, U. (1990). Structure and ligand binding properties of human serum albumin. Danish Medical Bulletin, 37 (1), 57–84.
  61. Wasko, J., Wolszczak, M., Zajaczkowska, Z., Dudek, M., Kolesinska, B. (2024). Human serum albumin as a potential drug delivery system for N-methylated hot spot insulin analogs inhibiting hormone aggregation. Bioorganic Chemistry, 143, 107104. https://doi.org/10.1016/j.bioorg.2024.107104
  62. Rao, S. S., Somayaji, Y., Kulal, A. (2022). Synthesis and Evaluation of the Insulin-Albumin Conjugate with Prolonged Glycemic Control. ACS Omega, 7 (6), 5131–5138. https://doi.org/10.1021/acsomega.1c06119
  63. Whittingham, J. L., Havelund, S., Jonassen, I. (1997). Crystal Structure of a Prolonged-Acting Insulin with Albumin-Binding Properties. Biochemistry, 36 (10), 2826–2831. https://doi.org/10.1021/bi9625105
  64. Kaarsholm, N. C., Havelund, S., Hougaard, P. (1990). Ionization behavior of native and mutant insulins: pK perturbation of B13-Glu in aggregated species. Archives of Biochemistry and Biophysics, 283 (2), 496–502. https://doi.org/10.1016/0003-9861(90)90673-m
  65. Rosskamp, R. H., Park, G. (1999). Long-acting insulin analogs. Diabetes Care, 22 (2), 109–113.
  66. Campbell, R. K., White, J. R., Levien, T., Baker, D. (2001). Insulin glargine. Clinical Therapeutics, 23 (12), 1938–1957. https://doi.org/10.1016/s0149-2918(01)80148-x
  67. Toujeo®. Sanofi. Available at: https://www.toujeopro.com/
  68. Kim, A. P., Bindler, R. J. (2016). The Future of Biosimilar Insulins. Diabetes Spectrum, 29 (3), 161–166. https://doi.org/10.2337/diaspect.29.3.161
  69. BLA vs. NDA: Understanding the Differences in Biopharmaceutical Approvals. Syner G. Available at: https://synergbiopharma.com/blog/bla-vs-nda/
  70. Guidance document. Applications Covered by Section 505(b)(2) (1999). U.S. Food and Drug Administration, FDA. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/applications-covered-section-505b2
  71. Industry Information and Guidance (2025). Biosimilars: U.S. Food and Drug Administration, FDA. Available at: https://www.fda.gov/drugs/biosimilars/industry-information-and-guidance
  72. Approved Biosimilars. U.S. Food and Drug Administration, FDA. Available at: https://biosimilarsforum.org/approved-biosimilars/
  73. Yu, M., Zhang, C., Xu, H., Dong, Y., Zhu, H., Xia, C., Feng, J. (2025). Design of a novel long-acting insulin analogs by acetylation modification and compared with insulin Icodec. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-025-94014-0
  74. Barlocco, D. (2003). Insulin detemir. Novo Nordisk. Current Opinion Investigational Drugs, 4 (4), 449–454.
  75. Vasselli, J. R., Pi-Sunyer, F. X., Wall, D. G., John, C. S., Chapman, C. D., Currie, P. J. (2017). Central effects of insulin detemir on feeding, body weight, and metabolism in rats. American Journal of Physiology-Endocrinology and Metabolism, 313 (5), E613–E621. https://doi.org/10.1152/ajpendo.00111.2016
  76. Kurtzhals, P., Schäffer, L., Sørensen, A., Kristensen, C., Jonassen, I., Schmid, C., Trüb, T. (2000). Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes, 49 (6), 999–1005. https://doi.org/10.2337/diabetes.49.6.999
  77. Hordern, S. V. M., Wright, J. E., Umpleby, A. M., Shojaee-Moradie, F., Amiss, J., Russell-Jones, D. L. (2005). Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia, 48 (3), 420–426. https://doi.org/10.1007/s00125-005-1670-1
  78. Rossetti, P., Porcellati, F., Ricci, N. B., Candeloro, P., Cioli, P., Bolli, G. B., Fanelli, C. G. (2008). Different Brain Responses to Hypoglycemia Induced by Equipotent Doses of the Long-Acting Insulin Analog Detemir and Human Regular Insulin in Humans. Diabetes, 57 (3), 746–756. https://doi.org/10.2337/db07-1433
  79. Hermansen, K., Davies, M., Derezinski, T., Martinez Ravn, G., Clauson, P., Home, P. (2006). A 26-Week, Randomized, Parallel, Treat-to-Target Trial Comparing Insulin Detemir With NPH Insulin as Add-On Therapy to Oral Glucose-Lowering Drugs in Insulin-Naïve People With Type 2 Diabetes. Diabetes Care, 29 (6), 1269–1274. https://doi.org/10.2337/dc05-1365
  80. Rosenstock, J., Davies, M., Home, P. D., Larsen, J., Koenen, C., Schernthaner, G. (2008). A randomised, 52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia, 51 (3), 408–416. https://doi.org/10.1007/s00125-007-0911-x
  81. Steensgaard, D. B., Schluckebier, G., Strauss, H. M., Norrman, M., Thomsen, J. K., Friderichsen, A. V. et al. (2013). Ligand-Controlled Assembly of Hexamers, Dihexamers, and Linear Multihexamer Structures by the Engineered Acylated Insulin Degludec. Biochemistry, 52 (2), 295–309. https://doi.org/10.1021/bi3008609
  82. Tambascia, M. A., Eliaschewitz, F. G. (2015). Degludec: the new ultra-long insulin analogue. Diabetology & Metabolic Syndrome, 7 (1). https://doi.org/10.1186/s13098-015-0037-0
  83. Jonassen, I., Havelund, S., Hoeg-Jensen, T., Steensgaard, D. B., Wahlund, P.-O., Ribel, U. (2012). Design of the Novel Protraction Mechanism of Insulin Degludec, an Ultra-long-Acting Basal Insulin. Pharmaceutical Research, 29 (8), 2104–2114. https://doi.org/10.1007/s11095-012-0739-z
  84. Nauck, M. A., Quast, D. R., Wefers, J., Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 101102. https://doi.org/10.1016/j.molmet.2020.101102
  85. Nishimura, E., Pridal, L., Glendorf, T., Hansen, B. F., Hubálek, F., Kjeldsen, T. et al. (2021). Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Research & Care, 9 (1), e002301. https://doi.org/10.1136/bmjdrc-2021-002301
  86. Goldman, J., Triplitt, C., Isaacs, D. (2024). Icodec: A Novel Once-Weekly Basal Insulin for Diabetes Management. Annals of Pharmacotherapy, 59 (6), 554–569. https://doi.org/10.1177/10600280241287790
  87. Ashraf, T., Kumar, A., Tara, A., Memon, N., Muhammad, A., Turesh, M. et al. (2025). Once-weekly insulin icodec vs. daily insulin glargine in type 2 diabetes: a meta-analysis with longitudinal insights. Annals of Medicine & Surgery, 87 (7), 4452–4466. https://doi.org/10.1097/ms9.0000000000003392
  88. Awiqli insulin icodec. European Medicines Agency. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/awiqli
  89. Novo Nordisk Resubmits FDA Application for First Once-Weekly Insulin for Type 2 Diabetes. MedPath. Available at: https://trial.medpath.com/news/08cba5b13b946426/novo-nordisk-resubmits-fda-application-for-first-once-weekly-insulin-for-type-2-diabetes
  90. Slieker, L. J., Brooke, G. S., DiMarchi, R. D., Flora, D. B., Green, J. S., Hoffmann, J. A. et al. (1997). Modifications in the B10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia, 40, 54–61. https://doi.org/10.1007/s001250051402
  91. Kesavadev, J., Basanth, A., Shankar, A., Saboo, B., Mohan, A. R., Joshi, S. et al. (2025). An Overview of Currently Available Injectable Therapies in Diabetes: A Guide to Practitioners. Advances in Therapy, 42 (8), 3634–3656. https://doi.org/10.1007/s12325-025-03250-3
  92. Raedler, L. A. (2016). Tresiba (Insulin Degludec Injection) and Ryzodeg 70/30 (Insulin Degludec and Insulin Aspart Injection): Two New Insulin Analogs for Glycemic Control in Diabetes Mellitus. American health & drug benefits, 9, 144–148. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC5013846/
  93. Becker, R. H. A., Frick, A. D. (2008). Clinical Pharmacokinetics and Pharmacodynamics of Insulin Glulisine. Clinical Pharmacokinetics, 47 (1), 7–20. https://doi.org/10.2165/00003088-200847010-00002
  94. Lih, A., Hibbert, E., Wong, T., Girgis, Ch. M., Garg, N., Carter, J. N. (2010). The role of insulin glulisine to improve glycemic control in children with diabetes mellitus. Diabetes, metabolic syndrome and obesity: targets and therapy, 26 (3), 403–412. https://doi.org/10.2147/dmsott.s5116
  95. Heise, T., Hövelmann, U., Zijlstra, E., Stender-Petersen, K., Jacobsen, J. B., & Haahr, H. (2016). A Comparison of Pharmacokinetic and Pharmacodynamic Properties Between Faster-Acting Insulin Aspart and Insulin Aspart in Elderly Subjects with Type 1 Diabetes Mellitus. Drugs & Aging, 34 (1), 29–38. https://doi.org/10.1007/s40266-016-0418-6
  96. Shah, H. K., Shah, M., Patel, H., Maslekar, A., Kanzariya, T. (2025). Comparison of Two Short-acting Insulin Formulations in the Management of Blood Glucose in Undergoing Coronary Artery Bypass Graft Surgery Patients. International Journal of Diabetes and Technology, 4 (2), 29–34. https://doi.org/10.4103/ijdt.ijdt_2_25
  97. Dutta, D., Mohindra, R., Mahajan, K., Sharma, M. (2023). Performance of Fast-Acting Aspart Insulin as Compared to Aspart Insulin in Insulin Pump for Managing Type 1 Diabetes Mellitus: A Meta-Analysis. Diabetes & Metabolism Journal, 47 (1), 72–81. https://doi.org/10.4093/dmj.2022.0035
  98. Leohr, J., Dellva, M. A., LaBell, E., Coutant, D. E., Arrubla, J., Plum‐Mörschel, L. et al. (2023). Ultra rapid lispro (Lyumjev®) shortens time to recovery from hyperglycaemia compared to Humalog® in individuals with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes, Obesity and Metabolism, 26 (1), 215–223. https://doi.org/10.1111/dom.15307
  99. Giorgino, F., Battelino, T., Bergenstal, R. M., Forst, T., Green, J. B., Mathieu, C. et al. (2023). The Role of Ultra-Rapid-Acting Insulin Analogs in Diabetes: An Expert Consensus. Journal of Diabetes Science and Technology, 19 (2), 452–469. https://doi.org/10.1177/19322968231204584
  100. Bailey, C. J., Flatt, P. R., Conlon, J. M. (2025). Multifunctional incretin peptides in therapies for type 2 diabetes, obesity and associated co-morbidities. Peptides, 187, 171380. https://doi.org/10.1016/j.peptides.2025.171380
  101. Leading drugs worldwide based on projected 2025 sales (2024). Statista. Available at: https://www.statista.com/statistics/973523/top-drugs-by-year-on-year-sales-increase/?srsltid=AfmBOoqM8YOOnt-ZldMq1TtqMzA5Tlqhp0gTTqh7uxBbHbj7WbB_Bn66
  102. Malone, E. (2025). Top 10 Drugs Q2 2025: Mounjaro Overtakes Ozempic: Citeline. Available at: https://insights.citeline.com/scrip/business/top-10-drugs-q2-2025-mounjaro-overtakes-ozempic-HJVMVTVQPFHC7NR7XUR46WEZBQ/
  103. ElSayed, N. A., McCoy, R. G., Aleppo, G., Bajaj, M., Balapattabi, K., Beverly, E. A. et al. (2024). 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes – 2025. Diabetes Care, 48 (1), S181–S206. https://doi.org/10.2337/dc25-s009
  104. Jung, H. N., Cho, Y. K., Min, S. H., Kim, H. S., Kim, Y.-J., Park, J.-Y. et al. (2022). Free Versus Fixed-Ratio Combination of Basal Insulin and GLP-1 Receptor Agonists in Type 2 Diabetes Uncontrolled With GLP-1 Receptor Agonists: A Systematic Review and Indirect Treatment Comparison. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.870722
  105. Candido, R., Nicolucci, A., Larosa, M., Rossi, M. C., Napoli, R., Gabellieri, E. et al. (2024). Treatment intensification following glucagon-like peptide-1 receptor agonist in type 2 diabetes: Comparative effectiveness analyses between free vs. fixed combination of GLP-1 RA and basal insulin. RESTORE-G real-world study. Nutrition, Metabolism and Cardiovascular Diseases, 34 (8), 1846–1853. https://doi.org/10.1016/j.numecd.2024.03.023
  106. Ahmed, A., Monir. Akl, M. (2024). Exploring a Synergistic Approach: Dual GLP-1 Agonist Combined with Degludec Basal Insulin for Early Type 1 Diabetes Treatment and its Impact on Albumin-Insulin Producing Cells Expression. Advanced Pharmaceutical Bulletin, 14 (2), 262–265. https://doi.org/10.34172/apb.2024.040
  107. Bolli, G. B., Porcellati, F., Lucidi, P., Fanelli, C. G., Perseghin, G., Horowitz, M. et al. (2025). An overview of randomized clinical trials of fixed-ratio combinations of basal insulin plus GLP-1RA (injectable therapy): Lessons for advancing therapy in people with type 2 diabetes. Diabetes, Obesity and Metabolism, 27 (7), 14–25. https://doi.org/10.1111/dom.16616
  108. Derzhavnyi reiestr likarskykh zasobiv Ukrainy. Available at: http://www.drlz.com.ua/
  109. Hoogwerf, B. J., Doshi, K. B., Diab, D. (2008). Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vascular health and risk management, 4 (2), 355–362. https://doi.org/10.2147/vhrm.s1978
  110. Sinézia, C., Sisnande, T., Icart, L. P., Lima, L. M. T. R. (2024). Oral delivery of the amylin receptor agonist pramlintide. Peptide Science, 116 (4). https://doi.org/10.1002/pep2.24346
  111. Riddle, M. C., Nahra, R., Han, J., Castle, J., Hanavan, K., Hompesch, M. et al. (2018). Control of Postprandial Hyperglycemia in Type 1 Diabetes by 24-Hour Fixed-Dose Coadministration of Pramlintide and Regular Human Insulin: A Randomized, Two-Way Crossover Study. Diabetes Care, 41 (11), 2346–2352. https://doi.org/10.2337/dc18-1091
  112. Riddle, M. C. (2020). Rediscovery of the Second β-Cell Hormone: Co-replacement With Pramlintide and Insulin in Type 1 Diabetes. Diabetes Care, 43 (3), 518–521. https://doi.org/10.2337/dci19-0077
  113. Haidar, A., Tsoukas, M. A., Bernier-Twardy, S., Yale, J.-F., Rutkowski, J., Bossy, A. et al. (2020). A Novel Dual-Hormone Insulin-and-Pramlintide Artificial Pancreas for Type 1 Diabetes: A Randomized Controlled Crossover Trial. Diabetes Care, 43 (3), 597–606. https://doi.org/10.2337/dc19-1922
  114. Maikawa, C. L., Chen, P. C., Vuong, E. T., Nguyen, L. T., Mann, J. L., d’Aquino, A. I. et al. (2021). Ultra‐Fast Insulin–Pramlintide Co‐Formulation for Improved Glucose Management in Diabetic Rats. Advanced Science, 8 (21). https://doi.org/10.1002/advs.202101575
  115. Kommera, S. P., Kumar, A., Chitkara, D., Mittal, A. (2024). Pramlintide an Adjunct to Insulin Therapy: Challenges and Recent Progress in Delivery. The Journal of Pharmacology and Experimental Therapeutics, 388 (1), 81–90. https://doi.org/10.1124/jpet.123.001679
  116. Rege, N. K., Phillips, N. F. B., Weiss, M. A. (2017). Development of glucose-responsive ‘smart’ insulin systems. Current Opinion in Endocrinology, Diabetes & Obesity, 24 (4), 267–278. https://doi.org/10.1097/med.0000000000000345
  117. Brouillard, J. E. (2025). Update on the status of Glucose-Responsive Insulins. Clinical Diabetes, 43 (2), 322–323. https://doi.org/10.2337/cd25-0007
  118. FDA Approves Medtronic MiniMed 780G System (2023). Danatech. Diabetes Technology ADCES. Available at: https://www.adces.org/education/danatech/latest-news/danatech-latest-news/2023/11/16/fda-approved-medtronic-minimed-780g-system
  119. Studies show promising results for individuals with type 2 diabetes and young children with type 1 diabetes on MiniMed™ 780G system (2025). Medtronic. Available at: https://news.medtronic.com/2025-06-20-Studies-show-promising-results-for-individuals-with-type-2-diabetes-and-young-children-with-type-1-diabetes-on-MiniMed-TM-780G-system
  120. Safety evaluation of an advanced Hybrid Closed Loop System using Lyumjev with the Tandem t:Slim X2 Insulin pump with control-iq technology in adults, adolescents and children with type 1 diabetes (2024). ClinicalTrials, National Library of Medicine. Available at: https://www.clinicaltrials.gov/study/NCT05403502
  121. Tandem Diabetes Care Announces t:slim X2™ Insulin Pump Compatibility with Abbott’s FreeStyle Libre® 3 Plus Sensor in the United States (2025). Tandem Diabetes Care. Available at: https://investor.tandemdiabetes.com/news-releases/news-release-details/tandem-diabetes-care-announces-tslim-x2tm-insulin-pump
  122. Ji, K., Wei, X., Kahkoska, A. R., Zhang, J., Zhang, Y., Xu, J. et al. (2024). An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs. Nature Nanotechnology, 19 (12), 1880–1891. https://doi.org/10.1038/s41565-024-01764-5
  123. Chou, D. H.-C., Webber, M. J., Tang, B. C., Lin, A. B., Thapa, L. S., Deng, D. et al. (2015). Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proceedings of the National Academy of Sciences, 112 (8), 2401–2406. https://doi.org/10.1073/pnas.1424684112
  124. Liu, W., Zhang, J., Wang, Y., He, Y., Wang, Y., Wei, X. et al. (2025). Long-acting glucose-responsive insulin with swift onset-of-action. Journal of Controlled Release, 383, 113826. https://doi.org/10.1016/j.jconrel.2025.113826
  125. Kruse, Th., Kofoed-Hansen, M., Muenzel, M. W. B., Thoegersen, H., Sauerberg, P., Rasmussen, J. E. et al. (2020). Glucose-sensitive albumin-binding derivatives. Patent US20200325160A1.
  126. Varas, N., Jarosinski, M. A., Chen, Y.-S., Ni, C.-L., Grabowski, R. A., Tai, N. et al. (2025). Ultrastable Insulin-Glucagon Fusion Protein Exploits an Endogenous Hepatic Switch to Mitigate Hypoglycemic Risk. ACS Pharmacology & Translational Science, 8 (9), 3240–3258. https://doi.org/10.1021/acsptsci.5c00362
  127. Bode, B. W., Boyd, J., Shah, A., Parkes, D., Ghosh, S., Cherrington, A. D. (2020). 7-LB: Insulin and Glucagon Coadministration in Type 1 Diabetes Prevents Hypoglycemia without Worsening Hyperglycemia. Diabetes, 69 (1). https://doi.org/10.2337/db20-7-lb
  128. Pedersen, C., Bouman, S. D., Porsgaard, T., Rosenkilde, M. M., Roed, N. K. (2018). Dual treatment with a fixed ratio of glucagon and insulin increases the therapeutic window of insulin in diabetic rats. Physiological Reports, 6 (6), e13657. https://doi.org/10.14814/phy2.13657
  129. Hoeg-Jensen, T., Kruse, T., Brand, C. L., Sturis, J., Fledelius, C., Nielsen, P. K. et al. (2024). Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature, 634 (8035), 944–951. https://doi.org/10.1038/s41586-024-08042-3
  130. Hoeg-Jensen, T. (2021). Review: Glucose-sensitive insulin. Molecular Metabolism, 46, 101107. https://doi.org/10.1016/j.molmet.2020.101107
  131. Asare-Bediako, I., Paszkiewicz, R. L., Kim, S. P., Woolcott, O. O., Kolka, C. M., Burch, M. A. et al. (2018). Variability of Directly Measured First-Pass Hepatic Insulin Extraction and Its Association With Insulin Sensitivity and Plasma Insulin. Diabetes, 67(8), 1495–1503. https://doi.org/10.2337/db17-1520
  132. Roger, R. C. (2025). Oral Insulin – Harnessing the Natural Physiology of Glucose Control in the Body. Medical Research Archives, 13 (1). https://doi.org/10.18103/mra.v13i1.6180
  133. Wong, C. Y., Martinez, J., Dass, C. R. (2016). Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. Journal of Pharmacy and Pharmacology, 68 (9), 1093–1108. https://doi.org/10.1111/jphp.12607
  134. Fontana, G., Innamorati, G., Giacomello, L. (2025). Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions. Pharmaceutics, 17 (12), 1563. https://doi.org/10.3390/pharmaceutics17121563
  135. Zhang, E., Zhu, H., Song, B., Shi, Y., Cao, Z. (2024). Recent advances in oral insulin delivery technologies. Journal of Controlled Release, 366, 221–230. https://doi.org/10.1016/j.jconrel.2023.12.045
  136. Rekha, M. R., Sharma, C. P. (2009). Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Journal of Controlled Release, 135 (2), 144–151. https://doi.org/10.1016/j.jconrel.2009.01.011
  137. Shams K. (2015). Nanoencapsulation of insulin using blends of biodegradable polymers and in vitro controlled release of insulin. Journal of Chemical Engineering & Process Technology, 06 (02). https://doi.org/10.4172/2157-7048.1000228
  138. Zhou, J., Zhang, J., Sun, Y., Luo, F., Guan, M., Ma, H. et al. (2023). A nano-delivery system based on preventing degradation and promoting absorption to improve the oral bioavailability of insulin. International Journal of Biological Macromolecules, 244, 125263. https://doi.org/10.1016/j.ijbiomac.2023.125263
  139. Ghassemi, A. H., van Steenbergen, M. J., Talsma, H., van Nostrum, C. F., Jiskoot, W., Crommelin, D. J. A., Hennink, W. E. (2009). Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). Journal of Controlled Release, 138 (1), 57–63. https://doi.org/10.1016/j.jconrel.2009.04.025
  140. Zhang, Y., Wu, X., Meng, L., Zhang, Y., Ai, R., Qi, N. et al. (2012). Thiolated Eudragit nanoparticles for oral insulin delivery: Preparation, characterization and in vivo evaluation. International Journal of Pharmaceutics, 436 (1-2), 341–350. https://doi.org/10.1016/j.ijpharm.2012.06.054
  141. Lin, C.-H., Chen, C.-H., Lin, Z.-C., Fang, J.-Y. (2017). Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of Food and Drug Analysis, 25 (2), 219–234. https://doi.org/10.1016/j.jfda.2017.02.001
  142. Muntoni, E., Marini, E., Ahmadi, N., Milla, P., Ghè, C., Bargoni, A. et al. (2019). Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: preliminary ex vivo and in vivo studies. Acta Diabetologica, 56 (12), 1283–1292. https://doi.org/10.1007/s00592-019-01403-9
  143. Zhang, Y., Xiong, M., Ni, X., Wang, J., Rong, H., Su, Y. et al. (2021). Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. ACS Applied Materials & Interfaces, 13 (15), 18077–18088. https://doi.org/10.1021/acsami.1c00580
  144. Scudeller, L. A., Mavropoulos, E., Tanaka, M. N., Costa, A. M., Braga, C. A. C., López, E. O. et al. (2017). Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Materials Science and Engineering: C, 79, 802–811. https://doi.org/10.1016/j.msec.2017.05.061
  145. Zou, J.-J., Wei, G., Xiong, C., Yu, Y., Li, S., Hu, L. et al. (2022). Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Science Advances, 8 (8). https://doi.org/10.1126/sciadv.abm4677
  146. Maher, S., Brayden, D. J., Casettari, L., Illum, L. (2019). Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics, 11 (1), 41. https://doi.org/10.3390/pharmaceutics11010041
  147. Wang, J., Kong, M., Zhou, Z., Yan, D., Yu, X., Cheng, X. et al. (2017). Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydrate Polymers, 157, 596–602. https://doi.org/10.1016/j.carbpol.2016.10.021
  148. Raptis, K., Heade, J., Cunha, C., van de Weert, M., Saaby, L., Rønholt, S., Nielsen, H. M. (2025). Permeation Enhancer‐based Ionogel Shows Remarkable Potential for Oral Insulin Delivery. Advanced Healthcare Materials, 14 (20). https://doi.org/10.1002/adhm.202500946
  149. Maher, S., Heade, J., McCartney, F., Waters, S., Bleiel, S. B., Brayden, D. J. (2018). Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. International Journal of Pharmaceutics, 539 (1-2), 11–22. https://doi.org/10.1016/j.ijpharm.2018.01.008
  150. Perinelli, D. R., Cespi, M., Casettari, L., Vllasaliu, D., Cangiotti, M., Ottaviani, M. F. et al. (2016). Correlation among chemical structure, surface properties and cytotoxicity of N-acyl alanine and serine surfactants. European Journal of Pharmaceutics and Biopharmaceutics, 109, 93–102. https://doi.org/10.1016/j.ejpb.2016.09.015
  151. Fan, W., Xia, D., Zhu, Q., Li, X., He, S., Zhu, C. et al. (2018). Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials, 151, 13–23. https://doi.org/10.1016/j.biomaterials.2017.10.022
  152. Wu, H., Nan, J., Yang, L., Park, H. J., Li, J. (2023). Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. Journal of Controlled Release, 353, 51–62. https://doi.org/10.1016/j.jconrel.2022.11.032
  153. Kumar, P., Kaur, N., Tiwari, P., Gupta, A. K., Mobin, S. M. (2023). Gelatin-Coated Copper-Based Metal–Organic Framework for Controlled Insulin Delivery: Possibility toward Oral Delivery System. ACS Materials Letters, 5 (4), 1100–1108. https://doi.org/10.1021/acsmaterialslett.2c01175
  154. Gu, Zh., Yu, J. (2018). Glucose-responsive insulin delivery microneedle system. Patent US11191815B2.
  155. Aich, K., Singh, T., Dang, S. (2022). Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Delivery and Translational Research, 12 (7), 1556–1568. https://doi.org/10.1007/s13346-021-01056-8
  156. Oramed Completes Patient Enrollment in Pivotal Phase 3 Oral Insulin Study ORA-D-013-1 (2022). ANP. Available at: https://persportaal.anp.nl/artikel/CSN-030522109/oramed-completes-patient-enrollment-in-pivotal-phase-3-oral-insulin-study-ora-d-013-1
  157. Eldor, R., Francis, B. H., Fleming, A., Neutel, J., Homer, K., Kidron, M. et al. (2022). Oral insulin (ORMD-0801) in type 2 diabetes mellitus: A dose-finding 12-week randomized placebo-controlled study, Diabetes, Obesity and Metabolism, 25 (4), 943–952. https://doi.org/10.1111/dom.14901
  158. Oramed Announces Top-line Results from Phase 3 Trial of ORMD-0801 for the Treatment of Type 2 Diabetes (2023). Oramed. Available at: https://oramed.com/oramed-announces-top-line-results-from-phase-3-trial-of-ormd-0801-for-the-treatment-of-type-2-diabetes/
  159. Halberg, I. B., Lyby, K., Wassermann, K., Heise, T., Zijlstra, E., Plum-Mörschel, L. (2019). Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. The Lancet Diabetes & Endocrinology, 7 (3), 179–188. https://doi.org/10.1016/s2213-8587(18)30372-3
  160. National Library of Medicine. Available at: https://clinicaltrials.gov/
  161. EudraCT. Available at: https://eudract.ema.europa.eu/
Evolution of insulin production technologies: from historical discoveries of the molecule structure to modern innovations

Published

2025-09-30

How to Cite

Kaliuzhnaia, O., & Khokhlenkova, N. (2025). Evolution of insulin production technologies: from historical discoveries of the molecule structure to modern innovations. ScienceRise: Biological Science, (3 (44), 10–31. https://doi.org/10.15587/2519-8025.2025.349033

Issue

Section

Biological Sciences