Model of spatial structure of human AIMP1/р43 protein

Authors

  • Дмитро Миколайович Ложко Institute of Molecular Biology and Genetics of NASU Zabolotnogo str., 150, Kyiv, Ukraine, 03680, Ukraine
  • Олександр Іванович Корнелюк Institute of Molecular Biology and Genetics of NASU Zabolotnogo str., 150, Kyiv, Ukraine, 03680, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2016.81822

Keywords:

AIMP1/р43, cytokines, circular dichroism (CD), computer modeling

Abstract

Computer modeling of 3D structure of full-length AIMP1/р43 - component of aminoacyl tRNA synthetase complex in higher eukaryotes, was performed. The model of the spatial structure of the dimer AIMP1/р43 was obtained. Experimental data on the content of the secondary structure of AIMP1/р43 was determined by circular dichroism method. The spatial structure of AIMP1/р43 allows to carry out structural and functional analysis of the interaction with other biologically important molecules

Author Biographies

Дмитро Миколайович Ложко, Institute of Molecular Biology and Genetics of NASU Zabolotnogo str., 150, Kyiv, Ukraine, 03680

Research assistant

Олександр Іванович Корнелюк, Institute of Molecular Biology and Genetics of NASU Zabolotnogo str., 150, Kyiv, Ukraine, 03680

Corresponding Member of NASU, Doctor of Biological Science, professor

References

  1. Wolfe, C. L., Warrington, J. A., Davis, S., Green, S., Norcum, M. T. (2009). Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII. Protein Science, 12 (10), 2282–2290. doi: 10.1110/ps.03147903
  2. Ivakhno, S. S., Kornelyuk, A. I. (2004). Cytokine-like activities of some aminoacyl-tRNAsynthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp. Oncol., 26 (4), 250–255.
  3. Quevillon, S., Agou, F., Robinson, J.-C., Mirande, M. (1997). The p43 Component of the Mammalian Multi-synthetase Complex Is Likely To Be the Precursor of the Endothelial Monocyte-activating Polypeptide II Cytokine. Journal of Biological Chemistry, 272 (51), 32573–32579. doi: 10.1074/jbc.272.51.32573
  4. Shalak, V., Kaminska, M., Mitnacht-Kraus, R., Vandenabeele, P., Clauss, M., Mirande, M. (2001). The EMAPII Cytokine Is Released from the Mammalian Multisynthetase Complex after Cleavage of Its p43/proEMAPII Component. Journal of Biological Chemistry, 276 (26), 23769–23776. doi: 10.1074/jbc.m100489200
  5. Fu, Y., Kim, Y., Jin, K. S., Kim, H. S., Kim, J. H., Wang, D. et. al. (2014). Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation. Proceedings of the National Academy of Sciences, 111 (42), 15084–15089. doi: 10.1073/pnas.1408836111
  6. Renault, L. (2001). Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. The EMBO Journal, 20 (3), 570–578. doi: 10.1093/emboj/20.3.570
  7. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H. et. al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. doi: 10.1093/bioinformatics/btm404
  8. Ishida, T., Kinoshita, K. (2007). PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35 (Web Server), W460–W464. doi: 10.1093/nar/gkm363
  9. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21 (16), 3433–3434. doi: 10.1093/bioinformatics/bti541
  10. Perez-Iratxeta, C., Andrade-Navarro, M. A. (2008). K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology, 8 (1), 25. doi: 10.1186/1472-6807-8-25
  11. Louis-Jeune, C., Andrade-Navarro, M. A., Perez-Iratxeta, C. (2011). Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins: Structure, Function, and Bioinformatics, 80 (2), 374–381. doi: 10.1002/prot.23188
  12. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M. et. al. (2007). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Protein Science, 2.9.1–2.9.31. doi: 10.1002/0471140864.ps0209s50
  13. Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., Šali, A. (2000). Comparative Protein Structure Modeling of Genes and Genomes. Annual Review of Biophysics and Biomolecular Structure, 29 (1), 291–325. doi: 10.1146/annurev.biophys.29.1.291
  14. Xu, D., Zhang, Y. (2011). Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization. Biophysical Journal, 101 (10), 2525–2534. doi: 10.1016/j.bpj.2011.10.024
  15. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J. et. al. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66 (1), 12–21. doi: 10.1107/s0907444909042073
  16. Doreleijers, J. F., Sousa da Silva, A. W., Krieger, E., Nabuurs, S. B., Spronk, C. A. E. M., Stevens, T. J. et. al. (2012). CING: an integrated residue-based structure validation program suite. Journal of Biomolecular NMR, 54 (3), 267–283. doi: 10.1007/s10858-012-9669-7
  17. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 33 (Web Server), W363–W367. doi: 10.1093/nar/gki481
  18. Comeau, S. R., Gatchell, D. W., Vajda, S., Camacho, C. J. (2003). ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20 (1), 45–50. doi: 10.1093/bioinformatics/btg371
  19. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25 (13), 1605–1612. doi: 10.1002/jcc.20084
  20. Park, S. G., Choi, E. C., Kim, S. (2010). Aminoacyl-tRNASynthetase–Interacting Multifunctional Proteins (AIMPs): A Triad for Cellular Homeostasis. IUBMB Life, 62 (4), 296–302. doi: 10.1002/iub.324

Published

2016-11-03

How to Cite

Ложко, Д. М., & Корнелюк, О. І. (2016). Model of spatial structure of human AIMP1/р43 protein. ScienceRise: Biological Science, (2 (2), 41–46. https://doi.org/10.15587/2519-8025.2016.81822

Issue

Section

Biological Sciences