Effect of zinc and acetate trigonella foenum graecum on the metabolism of nitric oxide in rats with alcohol dependence formed brain

Authors

  • Lesya Sokur Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine
  • Ielyzaveta Torgalo Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2017.83076

Keywords:

alcohol dependence, fenugreek, zinc acetate, metabolism, nitrosothiols, conditions of consumption, brain

Abstract

The influence of zinc acetate and fenugreek (Trigonella foenum) on the metabolism of nitric oxide in the brain of rats with formed alcohol dependence was investigated. To determine the activity of NO-synthase and its' isoforms (cytokine-dependent iNOS and Са2+-dependent cNOS) in brains of rats with formed alcohol addiction. To measure the level of NO2, NO3 and S-nitrosothioles in brains of rats with formed alcohol addiction. To study the effects of zinc acetate and Fenugreek (Trigonella foenum graecum) on activity of NO-synthase and its' isoforms (cytokine-dependent iNOS and Са2+-dependent cNOS) and level of NO2, NO3 and S-nitrosothioles in brains of rats with formed alcohol addiction.
It was shown that under conditions of consumption of alcohol the appropriate links of NO cycle were activated: NO-synthase (by means of cytokine-dependent iNOS and Ca2+-dependent NO-synthase isoforms in terms of initial studies: 1-4 weeks) and NO deposition as nitrosothiols

Author Biographies

Lesya Sokur, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

Doctor of Biological Sciences, Senior Researcher

Deputy Director for Science

Educational and Scientific Center "Institute of Biology and Medicine"

Ielyzaveta Torgalo, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

PhD, Research associate

Educational and Scientific Center "InstituteofBiologyand Medicine"

References

  1. Anohina, I. P. (2013). Osnovnue biologicheskie mehanizmu zavisimosti ot psihoaktivnuh veschestv. Voprosu narkologii, 6, 40–59.
  2. Pigolkin, Ju. I. (2006). Sudebno-medicinskaja diagnostika otravlenij spirtami. Moscow: MIA, 576.
  3. Sagach, V. F., Korkach, Ju. P., Kocjuruba, A. V., Prysjazhna, O. D. (2008). Prygnichennja oksydatyvnogo ta nitrozatyvnogo stresu jak mehanizm kardio- i vazoprotektornoi' dii' ekdysteronu za umov eksperymental'nogo cukrovogo diabetu I typu. Fiziol. zhurn., 54 (5), 46–54.
  4. Coyle, J., Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262 (5134), 689–695. doi: 10.1126/science.7901908
  5. Fadda, F. (1998). Chronic ethanol consumption:from neuroadaptation to neurodegeneration. Progress in Neurobiology, 56 (4), 385–431. doi: 10.1016/s0301-0082(98)00032-x
  6. Dahchour, A., De Witte, P. (2003). Effects of Acamprosate on Excitatory Amino Acids During Multiple Ethanol Withdrawal Periods. Alcoholism: Clinical & Experimental Research, 27 (3), 465–470. doi: 10.1097/01.alc.0000056617.68874.18
  7. Viktorov, I. V. (2000). Rol' oksida azota i drugih svobodnyh radikalov v ishemicheskoj patologii mozga. Vestn. RAMN, 4, 5–10.
  8. Bredt, D. S., Snyder, S. H. (1989). Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proceedings of the National Academy of Sciences, 86 (22), 9030–9033. doi: 10.1073/pnas.86.22.9030
  9. Zozulja, Ju., Sen'ko, L. (2000). Mul'tifunkcional'nost' i metabolizm oksida azota v central'noj nervnoj sisteme. Zh. Akad. med. nauk Ukrayni, 1, 3–26.
  10. Reutov, V. P., Sorokina, E. G., Ohotin, V. E., Kosicin, N. S. (1998). Ciklicheskoe prevrashhenie oksida azota v organizme mlekopitajushhih. Moscow: Nauka, 159.
  11. Vanin, A. F. (1998). Dinitrozil'nye kompleksy zheleza i S-nitrozotioly-dve vozmozhnye formy stabilizacii i transporta oksida azota v biologicheskih sistemah. Biohimija, 63 (7), 924–938.
  12. Harchenko, N. K. (1998). Rol' izmenenij funkcional'noj aktivnosti kateholaminovoj i opiatnoj sistem v mehanizme formirovanija i razvitija alkogol'noj zavisimosti. Arhiv psihiatrii, 1 (16), 123–128.
  13. Chin, S., Pandey, K., Shi, S. et. al. (1999). Increased activity and expression of Ca 2+ – dependent NOS in renal cortex of ANG II-infused hypertensive rats. Amer. J. Physiol., 277 (5), F797–F804.
  14. Garmatina, O. Ju., Tkachenko, M. N., Mojbenko, A. A. (2005). Inducibel'naja sintaza oksida azota pri patologii serdca. Zhurnal AMN Ukrainy, 11 (4), 645–659.
  15. Salter, M., Knowles, R. G., Moncada, S. (1991). Widespread tissue distribution, species distribution and changes in activity of Ca 2+ -dependent and Ca 2+ -independent nitric oxide synthases. FEBS Letters, 291 (1), 145–149. doi: 10.1016/0014-5793(91)81123-p
  16. Zaryc'ka, M. V., Sybirna, N. O. (2011). Uchast' riznyh izoform NO-syntazy v reguljacii' metabolizmu oksydu azotu pry streptozotocynovomu diabeti. Lab. diag., 4, 22–25.
  17. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126 (1), 131–138. doi: 10.1016/0003-2697(82)90118-x
  18. Syapin, P. J. (1998). Alcohol and Nitric Oxide Production by Cells of the Brain. Alcohol, 16 (2), 159–165. doi: 10.1016/s0741-8329(97)00186-9
  19. Kurovs'ka, V. O., Pishak, V. P., Tkachuk, S. S. (2008). Rol' oksydu azotu v ishemichnyh i ishemichnoreperfuzijnyh ushkodzhennjah golovnogo mozku. Bukovyns'k. med. visn., 12 (4), 143–149.
  20. Maksimovich, N. E. (2004). Osobennosti formirovanija urovnja oksida azota v plazme krovi krys pri ishemicheskih i reperfuzionnyh povrezhdenijah golovnogo mezga. Regionarnoe krovoobrashhenie i mikrocirkuljacija, 3, 55–60.
  21. Malyshev, I., Manuhina, E. (1998). Stress, adaptacija i oksid azota. Biohimija, 7, 992–1006.
  22. Derecha, L. N. (2007). Alkogol' i ego dejstvie na organizm: obzor literatury. Vіsnik Harkіvs'kogo nacіonal'nogo unіversitetu іmenі V. N. Karazіna. Serіja: bіologіja., 2, 7–16.
  23. Gorren, A. K. F., Majer, B. (1998). Universal'naja i kompleksnaja jenzimologija sintazy oksida azota. Biohimija, 7, 870–880.
  24. Bashkatova, V., Raevskij, K. (1998). Oksid azota v mehanizmah povrezhdenija mozga, obuslovlennyh nejrotoksicheskim dejstviem gljutamata. Biohimija, 7, 1020–1028.
  25. Moibenko, O. O., Sagach, V. F., Tkachenko, M. М. et. al. (2004). Fundamental mechanisms of action of nitric oxide on the cardiovascular system, as the basis of pathogenetic treatment of diseases. Fiziol. Zh., 1, 11–30.
  26. Lee, C. (2000). Regulation of Xanthine Oxidase by Nitric Oxide and Peroxynitrite. Journal of Biological Chemistry, 275 (13), 9369–9376. doi: 10.1074/jbc.275.13.9369
  27. Sharinov, R. R., Kotsiuruba, A. V., Kopyak, B. S., Sagach, V. F. (2014). Induction of oxidative stress in heart mitochondria by focal ischemia – reperfusion brain and protective effect of ecdysterone. Fiziol. Zh., 3, 11–17.
  28. Greenberg, S. S., Xie, J., Ouyang, J., Zhao, X. (1999). Ethanol Metabolism Is Not Required for Inhibition of LPS-Stimulated Transcription of Inducible Nitric Oxide Synthase. Alcohol, 17 (3), 203–213. doi: 10.1016/s0741-8329(98)00048-2

Published

2017-02-28

How to Cite

Sokur, L., & Torgalo, I. (2017). Effect of zinc and acetate trigonella foenum graecum on the metabolism of nitric oxide in rats with alcohol dependence formed brain. ScienceRise: Biological Science, (1 (4), 4–8. https://doi.org/10.15587/2519-8025.2017.83076

Issue

Section

Biological Sciences