Determination of the possibility of development of threatening condition in patients with diabetic ketoacidosis

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.113321

Keywords:

Diabetic ketoacidosis, intensive therapy, enteral oxygenation, hepato-intestinal dysfunction, logistic regression

Abstract

The aim of the research was to create a mathematical model for determining a possibility of the threatening condition development in patients with diabetic ketoacidosis using methods of mathematical statistics.

Methods. There were examined 43 patients with diabetes mellitus decompensation, who underwent intensive therapy by the offered method. Patients were divided in two groups depending on the presence of the threatening condition: group 1 – patients without hepato-intestinal dysfunction (12 persons); group 2 –patients with hepato-intestinal dysfunction (31 persons). All indicators were registered at admission to the department of intensive care at first, third and fifth day after the treatment. The method of logistic regression was used for constructing the mathematical model.

Results. There were revealed 5 most important indicators for determining the threatening condition, used as prognostic factors for estimating the complications probability. The model for assessing the data, used for ROC-analysis, was constructed.

Conclusions. The elaborated mathematical model of the possibility of the threatening condition development in patients with DKA allows to diagnose not only dangerous tendencies in real time, but also to use medical strategies for preventing and restoring hepato-intestinal and multiple organ dysfunction in these patients

Author Biographies

Viktor Lysenko, Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkiv, Ukraine, 61176

MD, Professor

Department of Anaesthesiology and Intensive Care

Ruslan Bryk, Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkiv, Ukraine, 61176

assistant

Department of Traumatology, Anaesthesiology and Military Surgery

Olena Vysotska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Biomedical Engineering

Andrei Porvan, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Аssociate professor

Department of Biomedical Engineering

References

  1. Pertzeva, N., Mankovsky, B. (2015). The slow Progression of type 1 Diabetes as Part of autoimmune Polyendocrine syndrome type 2. Diabetes Case Studies: Real Problems, Practical Solutions, 153–155.
  2. Diabetes. Media centre WHO (2017). WHO. Available at: http://www.who.int/mediacentre/factsheets/fs312/en/
  3. Dedov, I. I., Shestakova, M. V. (2003). Sakharnyy diabet [Diabetes mellitus]. Moscow: Universum Pablishing, 455.
  4. Mankovsky, B. N. (2004). Neotlozhnye sostoyanyya pry sakharnom dyabete [Emergency states in diabetes mellitus]. The art of treatment, 9, 86–91.
  5. Smirnova, O. O. (2015). Diabeticheskiy ketoatsidoz. Chast 2. Podkhod k stabilizatsii «nestabilnogo» diabetika [Diabetic ketoacidosis. Part 2. Approach to stabilizing the "unstable" diabetic]. Endocrinology, 4 (26), 48–56.
  6. Kiryanov, B. F., Tokmachev, M. S. (2009). Matematicheskie modeli v zdravookhranenii [Mathematical Models in Health Care]. Velikiy Novgorod: Novgorod State University, 279.
  7. Kolbin, A. S., Kurylev, A. A., Proskurin, M. A., Balykina, Yu. Ye. (2012). Modelirovanie meditsinskikh i ekonomicheskikh iskhodov sakharnogo diabeta [Simulation of medical and economic outcomes of diabetes mellitus]. Clinical pharmacology and therapy, 21 (5), 91–96.
  8. Stratton, I. M. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321 (7258), 405–412. doi: 10.1136/bmj.321.7258.405
  9. Clarke, P., Gray, A., Holman, R. (2002). Estimating Utility Values for Health States of Type 2 Diabetic Patients Using the EQ-5D (UKPDS 62). Medical Decision Making, 22 (4), 340–349. doi: 10.1177/0272989x0202200412
  10. Clark, L. T. (2003). Treating dyslipidemia with statins: The risk-benefit profile. American Heart Journal, 145 (3), 387–396. doi: 10.1067/mhj.2003.70
  11. Goodall, G., Jendle, J. H., Valentine, W. J., Munro, V., Brandt, A. B., Ray, J. A. et. al. (2008). Biphasic insulin aspart 70/30 vs. insulin glargine in insulin naïve type 2 diabetes patients: modelling the long-term health economic implications in a Swedish setting. International Journal of Clinical Practice, 62 (6), 869–876. doi: 10.1111/j.1742-1241.2008.01766.x
  12. Mueller, E., Maxion-Bergemann, S., Gultyaev, D., Walzer, S., Freemantle, N., Mathieu, C. et. al. (2006). Development and Validation of the Economic Assessment of Glycemic Control and Long-Term Effects of Diabetes (EAGLE) Model. Diabetes Technology & Therapeutics, 8 (2), 219–236. doi: 10.1089/dia.2006.8.219
  13. Serdyukova, D. M. (2015). Vliyanie stoimosti bolezni na optimalnyy vybor farmakoterapii sakharnogo diabeta 2 tipa [Influence of cost of illness to optimal choice of pharmacotherapy for type 2 diabetes]. Volgograd, 24.
  14. Aleksandrovich, Yu. S., Gordeev, V. I. (2010). Otsenochnye i prognosticheskie shkaly v meditsine kriticheskikh sostoyaniy [Estimating and prognostic scales in the medicine of critical states]. Sankr-Peterburg: Publishing house "ELBI-SPb", 248.
  15. Kurnikova, I. A. (2010). Optimizatsiya sistemnogo podkhoda v reabilitatsii bolnykh s sakharnym diabetom s vysokoy komorbidnostyu [Optimization of the system approach in the rehabilitation of patients with diabetes with high comorbidity]. Ulyanovsk, 48.
  16. Klimenteva, G. I., Kurnikova, I. A., Kuznetsova, I. A., Afonova, T. M. (2012). Sakharnyy diabet 2-go tipa i problema komorbidnoy patologii [Diabetes mellitus type 2 and the problem of comorbid pathology]. Kuban scientific medical bulletin, 1. Available at: http://cyberleninka.ru/article/n/saharnyy-diabet-2-go-tipa-i-problema-komorbidnoy-patologii
  17. Atramentova, L. A., Kravchun, N. A., Poltorak, V. V., Gorshunskaya, M. Yu., Yensen, Ye. et. al. (2015). Otsenka riska razvitiya nealkogolnoy zhirovoy bolezni pecheni u bolnykh sakharnym diabetom 2 tipa po sochetannomu patternu retinol svyazuyushchego proteina-4, adiponektina vysokogo molekulyarnogo vesa i indeksa massy tela [Assessment of the risk of developing non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus according to the combined pattern of retinol binding protein-4, adiponectin of high molecular weight and body mass index]. Problems of endocrine pathology, 3, 15–23.
  18. Lysenko, V. Y., Bryk, R. P., Karpenko, Ye. O. (2016). Korektsiya dyz·hidriyi ta hepato-intestynal'noyi dysfunktsiyi u khvorykh z diabetychnym ketoatsydozom [Correction of dihydrogen and hepato-intestinal dysfunction in patients with diabetic ketoacidosis]. Problems of Continuous Medical Education and Science, 1 (21), 73–78.
  19. Georgiyants, M. A., Pushkar, M. B., Vysotska, O. V., Porvan, A. P. (2017). Optimization of postoperative analgesia after adenoidectomy in children. Regulatory Mechanisms in Biosystems, 8 (2), 277–282. doi: 10.15421/021743
  20. Shulika, B., Porvan, A., Vysotska, O., Nekos, A., Zhemerov, A. (2017). Control over grape yield in the north-eastern region of Ukraine using mathematical modeling. Eastern-European Journal of Enterprise Technologies, 2 (3 (86)), 51–59. doi: 10.15587/1729-4061.2017.97969
  21. Georgiyants, M., Khvysyuk, O., Boguslavskaуa, N., Vysotska, O., Pecherska, A. (2017). Development of a mathematical model for predicting postoperative pain among patients with limb injuries. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 4–9. doi: 10.15587/1729-4061.2017.95157
  22. Davis, J., Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning. Available at: http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

Published

2017-10-31

How to Cite

Lysenko, V., Bryk, R., Vysotska, O., & Porvan, A. (2017). Determination of the possibility of development of threatening condition in patients with diabetic ketoacidosis. ScienceRise: Medical Science, (10 (18), 4–9. https://doi.org/10.15587/2519-4798.2017.113321

Issue

Section

Medical Science