Association between ultrasonographic parameters, clinical and biochemical indicators and results of surveys in patients with heart failure with moderately reduced left ventricle fraction

Authors

DOI:

https://doi.org/10.15587/2519-4798.2022.258497

Keywords:

heart failure, diabetes, NT-proBNP, echocardiography, body mass index, associations

Abstract

The aim: to evaluate the probable impact of type 2 diabetes on quality of life, clinical, biochemical and ultrasonographic parameters in patients with HFwmrLVEF and associations between them.

Materials and methods: the study included 68 patients with HFwmrLVEF, including 36 patients with concomitant DM type 2 and 32 patients without type 2 DM, and 18 healthy individuals. All study participants underwent anthropometric (height, weight, BMI), laboratory (clinical blood test, biochemical blood test to determine ACT, ALT, creatinine, glucose, lipid spectrum, potassium, sodium and magnesium, ELISA to determine glycated hemoglobin and NT-proBN ), instrumental (EchoC, ECG) surveys and surveys to assess quality of life (EQ-5D-5L). Statistical processing of the obtained results was performed using the statistical software package SPSS v.19.0.

Results: between the group of patients with HFwmrLVEF with concomitant type 2 DM and the group with HFwmrLVEF without type 2 DM according to the results of the study there is a significant difference in quality of life in carbohydrate metabolism, NT-proBNP, BMI and echocardiographic data.

Conclusions: patients with HFwmrLVEF with concomitant type 2 DM compared with patients with HFwmrLVEF without type 2 DM had significantly worse carbohydrate metabolism, significantly higher mean serum NT-proBNP concentration, higher LVMM and iLVMM in transthoracic E quality of life according to the results of the EQ-5D-5L questionnaire in the absence of a significant difference in age and LVEF between groups. In addition, there was a stronger correlation between NT-proBNP and iLVMM in patients without type 2 DM and no correlation between NT-proBNP and LVMM in patients with concomitant type 2 DM, which may be due to certain influence of type 2 DM on the process of pro-BNP conversion

Author Biographies

Iurii Rudyk, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

Doctor of Medical Sciences, Professor

Department of Clinical Pharmacology and Pharmacogenetics of Noncommunicable Diseases

Denys Babichev, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

Junior Researcher

Department of Clinical Pharmacology and Pharmacogenetics of Noncommunicable Diseases

Olena Medentseva, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

Researcher

Department of Clinical Pharmacology and Pharmacogenetics of Noncommunicable Diseases

Iurii Gasanov, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

Researcher

Department of Clinical Pharmacology and Pharmacogenetics of Noncommunicable Diseases

References

  1. McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M. et. al. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42 (36), 3599–3726. doi: http://doi.org/10.1093/eurheartj/ehab368
  2. Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S. et. al. (2018). American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 137 (12), e67–e492. doi: http://doi.org/10.1161/cir.0000000000000558
  3. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M. et. al. (2015). American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation, 131 (4), e29–e322. doi: http://doi.org/10.1161/cir.0000000000000152
  4. Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J. et. al. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European journal of heart failure, 18 (8), 891–975. doi: http://doi.org/10.1002/ejhf.592
  5. Braunwald, E. (2013). Heart failure. JACC. Heart failure, 1 (1), 1–20. doi: http://doi.org/10.1016/j.jchf.2012.10.002
  6. Nichols, G. A., Gullion, C. M., Koro, C. E., Ephross, S. A., Brown, J. B. (2004). The Incidence of Congestive Heart Failure in Type 2 Diabetes. Diabetes Care, 27 (8), 1879–1884. doi: http://doi.org/10.2337/diacare.27.8.1879
  7. Dei Cas, A., Khan, S. S., Butler, J., Mentz, R. J., Bonow, R. O., Avogaro, A. et. al. (2015). Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients With Heart Failure. JACC: Heart Failure, 3 (2), 136–145. doi: http://doi.org/10.1016/j.jchf.2014.08.004
  8. Dei Cas, A., Fonarow, G. C., Gheorghiade, M., Butler, J. (2015). Concomitant Diabetes Mellitus and Heart Failure. Current Problems in Cardiology, 40 (1), 7–43. doi: http://doi.org/10.1016/j.cpcardiol.2014.09.002
  9. Echouffo-Tcheugui, J. B., Xu, H., DeVore, A. D., Schulte, P. J., Butler, J., Yancy, C. W. et. al. (2016). Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines–Heart Failure registry. American Heart Journal, 182, 9–20. doi: http://doi.org/10.1016/j.ahj.2016.07.025
  10. Lam, C. S. P., Voors, A. A., Piotr, P., McMurray, J. J. V., Solomon, S. D. (2020). Time to rename the middle child of heart failure: heart failure with mildly reduced ejection fraction. European Heart Journal, 41 (25), 2353–2355. doi: http://doi.org/10.1093/eurheartj/ehaa158
  11. Tsuji, K., Sakata, Y., Nochioka, K., Miura, M., Yamauchi, T. et. al. (2017). Characterization of heart failure patients with mid-range left ventricular ejection fraction-a report from the CHART-2 Study. European Journal of Heart Failure, 19 (10), 1258–1269. doi: http://doi.org/10.1002/ejhf.807
  12. Park, J. J., Mebazaa, A., Hwang, I. C., Park, J. B., Park, J. H., Cho, G. Y. (2020). Phenotyping Heart Failure According to the Longitudinal Ejection Fraction Change: Myocardial Strain, Predictors, and Outcomes. Journal of the American Heart Association, 9 (12), e015009. doi: http://doi.org/10.1161/jaha.119.015009
  13. Wasserman, M. A., Shea, E., Cassidy, C., Fleishman, C., France, R., Parthiban, A., Landeck, B. F. (2021). Recommendations for the Adult Cardiac Sonographer Performing Echocardiography to Screen for Critical Congenital Heart Disease in the Newborn: From the American Society of Echocardiography. Journal of the American Society of Echocardiography, 34 (3), 207–222. doi: http://doi.org/10.1016/j.echo.2020.12.005
  14. Guo, Z., Liu, L., Yu, F., Cai, Y., Wang, J., Gao, Y., Ping, Z. (2021). The causal association between body mass index and type 2 diabetes mellitus-evidence based on regression discontinuity design. Diabetes/metabolism research and reviews, 37 (8), e3455. doi: http://doi.org/10.1002/dmrr.3455
  15. Ozawa, H., Fukui, K., Komukai, S., Y Baden, M., Fujita, S., Fujita, Y. et. al. (2021). Maximum body mass index before onset of type 2 diabetes is independently associated with advanced diabetic complications. BMJ Open Diabetes Research & Care, 9 (2), e002466. doi: http://doi.org/10.1136/bmjdrc-2021-002466
  16. Gentile, F., Sciarrone, P., Zamora, E., De Antonio, M., Santiago, E., Domingo, M. et. al. (2020). Body mass index and outcomes in ischaemic versus non-ischaemic heart failure across the spectrum of ejection fraction. European Journal of Preventive Cardiology, 28 (9), 948–955. doi: http://doi.org/10.1177/2047487320927610
  17. Khan, M. S., Felker, G. M., Piña, I. L., Camacho, A., Bapat, D., Ibrahim, N. E. et. al. (2021). Reverse Cardiac Remodeling Following Initiation of Sacubitril/Valsartan in Patients With Heart Failure With and Without Diabetes. JACC: Heart failure, 9 (2), 137–145. doi: http://doi.org/10.1016/j.jchf.2020.09.014
  18. Rudyk, I., Medentseva, O. (2018). The role of marker fibrosis ST2 and angiotensinogen gene polymorphism in heart failure progressing in patients with type 2 diabetes mellitus. Georgian medical news, 275, 105–112.
  19. Boczor, S., Daubmann, A., Eisele, M., Blozik, E., Scherer, M. (2019). Quality of life assessment in patients with heart failure: validity of the German version of the generic EQ-5D-5L™. BMC public health, 19 (1), 1464. doi: http://doi.org/10.1186/s12889-019-7623-2
  20. Jankowska, A., Golicki, D. (2021). EQ-5D-5L-based quality of life normative data for patients with self-reported diabetes in Poland. PLOS ONE, 16 (9), e0257998. doi: http://doi.org/10.1371/journal.pone.0257998
  21. Lehrke, M., Marx, N. (2017). Diabetes Mellitus and Heart Failure. The American Journal of Medicine, 130 (6), S40–S50. doi: http://doi.org/10.1016/j.amjmed.2017.04.010
  22. Chirinos, J. A., Bhattacharya, P., Kumar, A., Proto, E., Konda, P., Segers, P. et. al. (2019). Impact of Diabetes Mellitus on Ventricular Structure, Arterial Stiffness, and Pulsatile Hemodynamics in Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 8 (4), e011457. doi: http://doi.org/10.1161/jaha.118.011457
  23. Shah, A. M., Hung, C. L., Shin, S. H., Skali, H., Verma, A., Ghali, J. K. et. al. (2011). Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both. American heart journal, 162 (4), 685–691. doi: http://doi.org/10.1016/j.ahj.2011.07.015
  24. Ledwidge, M., Gallagher, J., Conlon, C., Tallon, E., O'Connell, E., Dawkins, I. et. al. (2013). Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA, 310 (1), 66–74. doi: http://doi.org/10.1001/jama.2013.7588
  25. Krittayaphong, R., Boonyasirinant, T., Saiviroonporn, P., Thanapiboonpol, P., Nakyen, S., Udompunturak, S. (2008). Correlation Between NT-pro BNP levels and left ventricular wall stress, sphericity index and extent of myocardial damage: a magnetic resonance imaging study. Journal of Cardiac Failure, 14 (8), 687–694. doi: http://doi.org/10.1016/j.cardfail.2008.05.002
  26. Pareek M. (2017). The Interplay between Fasting Glucose, Echocardiography, and Biomarkers: Pathophysiological Considerations and Prognostic Implications. Danish medical journal, 64 (9), B5400.

Downloads

Published

2022-05-31

How to Cite

Rudyk, I., Babichev, D., Medentseva, O., & Gasanov, I. (2022). Association between ultrasonographic parameters, clinical and biochemical indicators and results of surveys in patients with heart failure with moderately reduced left ventricle fraction. ScienceRise: Medical Science, (3(48), 9–14. https://doi.org/10.15587/2519-4798.2022.258497

Issue

Section

Medical Science