Sonoelastographic evaluation of salivary gland lesions with clinicopathological association

Authors

DOI:

https://doi.org/10.15587/2519-4798.2023.275390

Keywords:

salivary gland, ultrasonography, sonoelastography, strain elastography, shear elastography

Abstract

Sonoelastography is a comparatively new and developing technology in the field of salivary gland imaging. Nevertheless, it has the potential to distinguish between various types of lesions by calculating the degree of strain-related deformation under the externally applied force. With this background, the present study was undertaken to evaluate the role of sonoelastography in characterising salivary gland lesions as benign or malignant.

The aim:          To evaluate and characterize salivary Gland lesions on the Gray scale and Colour doppler ultrasonography and sonoelastography and to correlate these findings with the clinico-pathological diagnosis.

Methodology: This prospective cross-sectional study was conducted in the Department of Radiodiagnosis, Teerthanker Mahaveer Medical College & Research Centre, Moradabad (U.P.), from Aug 2021 to Nov 2022. All patients referred to the radiology department for imaging with clinical suspicion of having salivary gland lesions were enrolled in the study and evaluated on the SIEMENS ACUSON S3000 machine. Gray scale USG was done first to assess various morphological features of lesions, and then a Doppler assessment was done to determine vascularity within the lesion. Subsequently, real-time strain elastography (eSie touch) was performed to assess the tissue stiffness. The elastogram image of the detected lesions was evaluated using colour coding ranging from blue (soft) through green (intermediate/average hardness) and red (hard). After strain elastography, shear wave elastography of the lesion was also performed using Virtual Touch Quantification (VTQ) and Virtual Touch Imaging Quantification (VTIQ) software. The sonographic findings were correlated with histopathological diagnosis. The acquired data were subjected to statistical analysis using the software SPSS version 20. Sensitivity, specificity, PPV and NPV were calculated for conventional ultrasound techniques alone & in combination with elastography.

Results: Out of the 50 salivary gland lesions included in the study, 44 (88 %) were benign, whereas 6 (12 %) were malignant on cytology. The age of the study population ranged from 16 to 75 years, with a mean age of 38.82 years. Pleomorphic adenoma (60 %) was the most frequent lesion, followed by Warthin's tumour (28 %). The Conventional USG showed 66.67 %, sensitivity, 52.27 %, specificity, 16.00 %, PPV, 92.00 % NPV and 54.00 % accuracy in differentiating benign from malignant lesions while USG- Elastography combined showed higher diagnostic performance with 83.33 %, sensitivity, 79.55 %, specificity, 35.71 % PPV, 97.22 % NPV and 80.00 %, accuracy. The specific cut-off scores for the sonoelastography score, eSie touch, VTQ, and VTIQ were also determined to diagnose a lesion as malignant or benign, and the difference was found to be statistically significant.

Conclusions: Sonoelastography alone cannot be solely relied upon to distinguish between malignant & benign salivary gland abnormalities. However, it can be combined with conventional USG for better differentiation and characterization of these lesions

Author Biographies

Arpit Deriya, Teerthanker Mahaveer Medical College & Research Centre

Resident

Department of Radiodiagnosis

Deepti Arora, Teerthanker Mahaveer Medical College & Research Centre

Associate Professor

Department of Pathology

Ankur Malhotra, Teerthanker Mahaveer Medical College & Research Centre

Professor

Department of Radiodiagnosis

Shruti Chandak, Teerthanker Mahaveer Medical College & Research Centre

Professor

Department of Radiodiagnosis

Vaibhav Goyal, Teerthanker Mahaveer Medical College & Research Centre

Resident

Department of Radio-diagnosis

Paurush Jain, Teerthanker Mahaveer Medical College & Research Centre

Resident

Department of Radiodiagnosis

References

  1. Agrawal, R. V., Solanki, B. R., Junnarkar, R. V. (1967). Salivary gland tumours. Indian Journal of Cancer, 4 (2), 209–213.
  2. Elbeblawy, Y. M., Eshaq Amer Mohamed, M. (2020). Strain and shear wave ultrasound elastography in evaluation of chronic inflammatory disorders of major salivary glands. Dentomaxillofacial Radiology, 49 (3). doi: https://doi.org/10.1259/dmfr.20190225
  3. Farasat, M., Yilmaz Ovali, G., Duzgun, F., Eskiizmir, G., Tarhan, S., Tan, A. (2017). Sonoelastographic Features of Major Salivary Gland Tumors and Pathology Correlation. Iranian Journal of Radiology, 15 (1). doi: https://doi.org/10.5812/iranjradiol.64039
  4. Mantsopoulos, K., Klintworth, N., Iro, H., Bozzato, A. (2015). Applicability of Shear Wave Elastography of the Major Salivary Glands: Values in Healthy Patients and Effects of Gender, Smoking and Pre-Compression. Ultrasound in Medicine & Biology, 41 (9), 2310–2318. doi: https://doi.org/10.1016/j.ultrasmedbio.2015.04.015
  5. Dumitriu, D., Dudea, S., Botar-Jid, C., Băciuţ, M., Băciuţ, G. (2011). Real-Time Sonoelastography of Major Salivary Gland Tumors. American Journal of Roentgenology, 197 (5), W924–W930. doi: https://doi.org/10.2214/ajr.11.6529
  6. Zhang, Y.-F., Li, H., Wang, X.-M., Cai, Y.-F. (2018). Sonoelastography for differential diagnosis between malignant and benign parotid lesions: a meta-analysis. European Radiology, 29 (2), 725–735. doi: https://doi.org/10.1007/s00330-018-5609-6
  7. Celebi, I., Mahmutoglu, A. S. (2013). Early results of real-time qualitative sonoelastography in the evaluation of parotid gland masses: A study with histopathological correlation. Acta Radiologica, 54 (1), 35–41. doi: https://doi.org/10.1258/ar.2012.120405
  8. Altinbas, N. K., Gundogdu Anamurluoglu, E., Oz, I. I., Yuce, C., Yagci, C., Ustuner, E., Akyar, S. (2016). Real-Time Sonoelastography of Parotid Gland Tumors. Journal of Ultrasound in Medicine, 36 (1), 77–87. doi: https://doi.org/10.7863/ultra.16.02038
  9. Bagri, N., Misra, R. N., Bajaj, S. K., Chandra, R., Malik, A., Bharadwaj, N., Gaikwad, V. (2020). Evaluation of Salivary Gland Lesions by Real Time Sonoelastography: Diagnostic Efficacy and Comparative Analysis with Conventional Sonography. Journal of Clinical and Diagnostic Research, 14 (6), TC05–TC09. doi: https://doi.org/10.7860/jcdr/2020/43476.13796
  10. Cortcu, S., Elmali, M., Tanrivermis Sayit, A., Terzi, Y. (2018). The Role of Real-Time Sonoelastography in the Differentiation of Benign From Malignant Parotid Gland Tumors. Ultrasound Quarterly, 34 (2), 52–57. doi: https://doi.org/10.1097/ruq.0000000000000323
  11. Bozzato, A., Zenk, J., Greess, H., Hornung, J., Gottwald, F., Rabe, C., Iro, H. (2007). Potential of ultrasound diagnosis for parotid tumors: Analysis of qualitative and quantitative parameters. Otolaryngology–Head and Neck Surgery, 137 (4), 642–646. doi: https://doi.org/10.1016/j.otohns.2007.05.062
  12. Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlkes, J. B., Emelianov, S. Y. (1998). Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in Medicine & Biology, 24 (9), 1419–1435. https://doi.org/10.1016/s0301-5629(98)00110-0
  13. Nightingale, K., McAleavey, S., Trahey, G. (2003). Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound in Medicine & Biology, 29 (12), 1715–1723. doi: https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
  14. Sarvazyan, A., J. Hall, T., W. Urban, M., Fatemi, M., R. Aglyamov, S., S. Garra, B. (2011). An Overview of Elastography-An Emerging Branch of Medical Imaging. Current Medical Imaging Reviews, 7 (4), 255–282. doi: https://doi.org/10.2174/157340511798038684
  15. Lerner, R. M., Parker, K. J., Holen, J., Gramiak, R., Waag, R. C. (1988). Sono-Elasticity: Medical Elasticity Images Derived from Ultrasound Signals in Mechanically Vibrated Targets. Acoustical Imaging, 317–327. doi: https://doi.org/10.1007/978-1-4613-0725-9_31
  16. Zaleska-Dorobisz, U., Kaczorowski, K., Pawluś, A., Puchalska, A., Inglot, M. (2014). Ultrasound Elastography – Review of Techniques and its Clinical Applications. Advances in Clinical and Experimental Medicine, 23, 645–655. doi: https://doi.org/10.17219/acem/26301
  17. Itoh, A., Ueno, E., Tohno, E., Kamma, H., Takahashi, H., Shiina, T. et al. (2006). Breast Disease: Clinical Application of US Elastography for Diagnosis. Radiology, 239 (2), 341–350. doi: https://doi.org/10.1148/radiol.2391041676
  18. Karaman, C. Z., Başak, S., Polat, Y. D., Ünsal, A., Taşkın, F., Kaya, E., Günel, C. (2018). The Role of Real‐Time Elastography in the Differential Diagnosis of Salivary Gland Tumors. Journal of Ultrasound in Medicine, 38 (7), 1677–1683. doi: https://doi.org/10.1002/jum.14851
  19. Yerli, H., Yilmaz, T., Kaskati, T., Gulay, H. (2011). Qualitative and Semiquantitative Evaluations of Solid Breast Lesions by Sonoelastography. Journal of Ultrasound in Medicine, 30 (2), 179–186. doi: https://doi.org/10.7863/jum.2011.30.2.179
  20. Dejaco, C., De Zordo, T., Heber, D., Hartung, W., Lipp, R., Lutfi, A. et al. (2014). Real-Time Sonoelastography of Salivary Glands for Diagnosis and Functional Assessment of Primary Sjögren’s Syndrome. Ultrasound in Medicine & Biology, 40 (12), 2759–2767. doi: https://doi.org/10.1016/j.ultrasmedbio.2014.06.023
  21. Khalife, A., Bakhshaee, M., Davachi, B., Mashhadi, L., Khazaeni, K. (2016). The diagnostic value of B-mode sonography in differentiation of malignant and benign tumors of the parotid gland. Iranian Journal of Otorhinolaryngology, 28 (5), 305–312.
  22. Bialek, E. J., Jakubowski, W., Szczepanik, A. B., Maryniak, R. K., Prochorec-Sobieszek, M., Bilski, R., Szopinski, K. T. (2007). Vascular patterns in superficial lymphomatous lymph nodes: A detailed sonographic analysis. Journal of Ultrasound, 10 (3), 128–134. doi: https://doi.org/10.1016/j.jus.2007.06.003
  23. Na, D. G., Lim, H. K., Byun, H. S., Kim, H. D., Ko, Y. H., Baek, J. H. (1997). Differential diagnosis of cervical lymphadenopathy: usefulness of color Doppler sonography. American Journal of Roentgenology, 168 (5), 1311–1316. doi: https://doi.org/10.2214/ajr.168.5.9129432
  24. Zengel, P., Notter, F., Clevert, D. A. (2019). VTIQ and VTQ in combination with B-mode and color Doppler ultrasound improve classification of salivary gland tumors, especially for inexperienced physicians. Clinical Hemorheology and Microcirculation, 70 (4), 457–466. doi: https://doi.org/10.3233/ch-189312
  25. Babu N., S., Mahadev, N. H., V., K. G. (2019). A clinical study of the incidence of salivary gland tumors in a tertiary care teaching hospital. International Surgery Journal, 6 (6), 2110. doi: https://doi.org/10.18203/2349-2902.isj20192376
  26. Dumitriu, D., Dudea, S., Badea, R., Baciut, G., Baciut, M. (2008). B-mode and Doppler ultrasound appearance of salivary gland tumors. Ultraschall in Der Medizin - European Journal of Ultrasound, 29 (S1), 31–37. doi: https://doi.org/10.1055/s-2008-1079890
  27. Stewart, C. J. R., MacKenzie, K., McGarry, G. W., Mowat, A. (2000). Fine-needle aspiration cytology of salivary gland: A review of 341 cases. Diagnostic Cytopathology, 22 (3), 139–146. doi: https://doi.org/10.1002/(sici)1097-0339(20000301)22:3<139::aid-dc2>3.0.co;2-a
  28. Boccato, P., Altavilla, G., Blandamura, S. (1998). Fine Needle Aspiration Biopsy of Salivary Gland Lesions. Acta Cytologica, 42 (4), 888–898. doi: https://doi.org/10.1159/000331964
  29. Rajdeo, R., Shrivastava, A., Bajaj, J., Shrikhande, A., Rajdeo, R. (2015). Clinicopathological study of salivary gland tumors: An observation in tertiary hospital of central India. International Journal of Research in Medical Sciences, 1691–1696. doi: https://doi.org/10.18203/2320-6012.ijrms20150253
  30. Cristallini, E. G., Ascani, S., Farabi, R., Liberati, F., Macciò, T., Peciarolo, A., Bolis, G. B. (1997). Fine Needle Aspiration Biopsy of Salivary Gland, 1985–1995. Acta Cytologica, 41 (5), 1421–1425. doi: https://doi.org/10.1159/000332853
  31. Ito, F. A., Ito, K., Vargas, P. A., de Almeida, O. P., Lopes, M. A. (2005). Salivary gland tumors in a Brazilian population: a retrospective study of 496 cases. International Journal of Oral and Maxillofacial Surgery, 34 (5), 533–536. doi: https://doi.org/10.1016/j.ijom.2005.02.005
  32. Joshi, A. N., Kamble, R. C., Mestry, P. J. (2013). Ultrasound Characterization of Salivary Lesions. An International Journal of Otorhinolaryngology Clinics, 5 (4), 16–29. doi: https://doi.org/10.5005/aijoc-5-4-16
  33. Speight, P., Barrett, A. (2002). Salivary gland tumours. Oral Diseases, 8 (5), 229–240. doi: https://doi.org/10.1034/j.1601-0825.2002.02870.x
  34. Wu, S., Liu, G., Chen, R., Guan, Y. (2012). Role of ultrasound in the assessment of benignity and malignancy of parotid masses. Dentomaxillofacial Radiology, 41 (2), 131–135. doi: https://doi.org/10.1259/dmfr/60907848
  35. Singh, S., Nagar, A., Sakhi, P., Kataria, S., Julka, K., Gupta, A. (2015). Role of high resolution sonography in characterization of solid salivary gland tumors. Journal of Evolution of Medical and Dental Sciences, 4 (39), 6787–6792. doi: https://doi.org/10.14260/jemds/2015/984
  36. Lo, W., Chang, C., Wang, C., Cheng, P., Liao, L. (2020). A Novel Sonographic Scoring Model in the Prediction of Major Salivary Gland Tumors. The Laryngoscope, 131 (1), E157–E162. doi: https://doi.org/10.1002/lary.28591
  37. Bialek, E. J., Jakubowski, W., Zajkowski, P., Szopinski, K. T., Osmolski, A. (2006). US of the Major Salivary Glands: Anatomy and Spatial Relationships, Pathologic Conditions, and Pitfalls. RadioGraphics, 26 (3), 745–763. doi: https://doi.org/10.1148/rg.263055024
  38. Cheng, P.-C., Lo, W.-C., Chang, C.-M., Wen, M.-H., Cheng, P.-W., Liao, L.-J. (2022). Comparisons among the Ultrasonography Prediction Model, Real-Time and Shear Wave Elastography in the Evaluation of Major Salivary Gland Tumors. Diagnostics, 12 (10), 2488. doi: https://doi.org/10.3390/diagnostics12102488
  39. Bojunga, J., Herrmann, E., Meyer, G., Weber, S., Zeuzem, S., Friedrich-Rust, M. (2010). Real-Time Elastography for the Differentiation of Benign and Malignant Thyroid Nodules: A Meta-Analysis. Thyroid, 20 (10), 1145–1150. doi: https://doi.org/10.1089/thy.2010.0079
  40. Cantisani, V., Ulisse, S., Guaitoli, E., De Vito, C., Caruso, R., Mocini, R. et al. (2012). Q-Elastography in the Presurgical Diagnosis of Thyroid Nodules with Indeterminate Cytology. PLoS ONE, 7 (11), e50725. doi: https://doi.org/10.1371/journal.pone.0050725
  41. Zhang, Y.-F., Xu, H.-X., He, Y., Liu, C., Guo, L.-H., Liu, L.-N., Xu, J.-M. (2012). Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules. PLoS ONE, 7 (11), e49094. doi: https://doi.org/10.1371/journal.pone.0049094
  42. Cho, S. H., Lee, J. Y., Han, J. K., Choi, B. I. (2010). Acoustic Radiation Force Impulse Elastography for the Evaluation of Focal Solid Hepatic Lesions: Preliminary Findings. Ultrasound in Medicine & Biology, 36 (2), 202–208. doi: https://doi.org/10.1016/j.ultrasmedbio.2009.10.009
  43. Golatta, M., Schweitzer-Martin, M., Harcos, A., Schott, S., Gomez, C., Stieber, A. et al. (2014). Evaluation of Virtual Touch Tissue Imaging Quantification, a New Shear Wave Velocity Imaging Method, for Breast Lesion Assessment by Ultrasound. BioMed Research International, 2014, 1–7. doi: https://doi.org/10.1155/2014/960262
  44. Fahey, B. J., Nelson, R. C., Bradway, D. P., Hsu, S. J., Dumont, D. M., Trahey, G. E. (2007). In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Physics in Medicine & Biology, 53 (1), 279–293. doi: https://doi.org/10.1088/0031-9155/53/1/020
  45. Schaefer, F. K. W., Heer, I., Schaefer, P. J., Mundhenke, C., Osterholz, S., Order, B. M. et al. (2011). Breast ultrasound elastography—Results of 193 breast lesions in a prospective study with histopathologic correlation. European Journal of Radiology, 77 (3), 450–456. doi: https://doi.org/10.1016/j.ejrad.2009.08.026
  46. Yi, A., Cho, N., Chang, J. M., Koo, H. R., La Yun, B., Moon, W. K. (2011). Sonoelastography for 1786 non-palpable breast masses: diagnostic value in the decision to biopsy. European Radiology, 22 (5), 1033–1040. doi: https://doi.org/10.1007/s00330-011-2341-x
  47. Chen, Y., Han, T., Wu, R., Yao, M., Xu, G., Zhao, L. et al. (2016). Comparison of Virtual Touch Tissue Quantification and Virtual Touch Tissue Imaging Quantification for diagnosis of solid breast tumors of different sizes. Clinical Hemorheology and Microcirculation, 64 (2), 235–244. doi: https://doi.org/10.3233/ch-16192

Downloads

Published

2023-01-31

How to Cite

Deriya, A., Arora, D., Malhotra, A., Chandak, S., Goyal, V., & Jain, P. (2023). Sonoelastographic evaluation of salivary gland lesions with clinicopathological association. ScienceRise: Medical Science, (1(52), 10–20. https://doi.org/10.15587/2519-4798.2023.275390

Issue

Section

Medical Science