Atrial fibrillation in coronary artery disease patients: gut microbiota composition and echocardiography indexes

Authors

DOI:

https://doi.org/10.15587/2519-4798.2023.297055

Keywords:

coronary artery disease, atrial fibrillation, echocardiography, gut microbiota composition

Abstract

The aim: to find connections between gut microbiota composition and transthoracic echocardiography (TTE) indexes in patients with coronary artery disease (CAD) and atrial fibrillation (AF).

Materials and methods: 300 patients were divided into 3 groups: first (CAD) – 149 patients with CAD but without arrhythmias; second (CAD+AF) – 124 patients with CAD and AF paroxysm; and the control group – 27 patients without CAD and arrhythmias. 16-S rRNA sequencing checked gut microbiota composition. TTE was done by ALOKA SSD-5000.

Results: The II group patients were characterized by the increase of LAD (10.03 %), LAV (15.40 %) and LAVI (11.48 %) in comparison with the I group, P<0.05. The II group patients were characterized by a rise of Pseudomonadota in comparison with the I group, P<0.05. Also, II group patients were characterized by rise of Actinobacter Spp. and decrease of Blautia Spp., Bacteroides Thetaiotaomicron in comparison with the I group, P<0.05. Firmicutes were correlated with AO (r=0.308), LADI (r=-0.363), RV (r=-0.470), IVS (r=-0.381), LVPW (r=-0.345), LVM (r=-0.476) and EF (r=0,312), P<0.05. Akkermansia Muciniphila was correlated with LAD (r=-0.343), LADI (r=-0.308), LAV (r=-0.494), LAVI (r=-0.488), RAV (r=-0.316), RAVI (r=-0.397), RV (r=-0.383), EF (r=0.332), P<0.05. Bifidobacterium Spp. were correlated with LAV (r=-0.487), LAVI (r=-0.327), RV (r=-0.341), IVS (r=-0.306), RWT (r=-0.389), LVM (r=-0.369), LVMI (r=-0.312), EF (r=0.317), P<0.05. Streptococcus Spp. were correlated with AO (r=0,329), LVOT (r=0,390), RV (r=0,393), IVS (r=0,648), LVPW (r=0,579), RWT (r=0,356), LVM (r=0,336), LVMI (r=0,376), P<0.05. Ruminococcus Spp. were correlated with AO (r=0,412), LVOT (r=0,351), LADI (r=-0.343), IVS (r=-0.316), LVPW (r=-0.367), LVM (r=-0.302), LVMI (r=-0.379), P<0.05.

Conclusion: Gut microbiota composition and TTE indexes play a significant role in CAD and AF pathogenesis. Firmicutes, Bifidobacterium spp., and Verrucomicrobiota (Akkermansia muciniphila) were significantly correlated with left atrium size and volume, as well as their ultrasound indexes. Bifidobacterium spp., Bacteroides Spp., Streptococcus Spp. and Ruminococcus Spp. were significantly correlated with left ventricular sizes and its hypertrophy indexes

Author Biographies

Iryna Melnychuk, Bogomolets National Medical University

PhD, Associate Professor

Internal Medicine Department No. 4

Maryna Sharayeva, Bogomolets National Medical University

PhD, Associate Professor

Internal Medicine Department No. 4

References

  1. Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J. J., Blomström-Lundqvist, C. et al. (2020). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal, 42 (5), 373–498. doi: https://doi.org/10.1093/eurheartj/ehaa612
  2. Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C. et al. (2019). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41 (3), 407–477. doi: https://doi.org/10.1093/eurheartj/ehz425
  3. Gawałko, M., Agbaedeng, T. A., Saljic, A., Müller, D. N., Wilck, N., Schnabel, R. et al. (2021). Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovascular Research, 118 (11), 2415–2427. doi: https://doi.org/10.1093/cvr/cvab292
  4. Schoeler, M., Caesar, R. (2019). Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 20 (4), 461–472. doi: https://doi.org/10.1007/s11154-019-09512-0
  5. Patterson, E., Ryan, P. M., Cryan, J. F., Dinan, T. G., Ross, R. P., Fitzgerald, G. F., Stanton, C. (2016). Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 92 (1087), 286–300. doi: https://doi.org/10.1136/postgradmedj-2015-133285
  6. Ling, Z., Liu, X., Cheng, Y., Yan, X., Wu, S. (2020). Gut microbiota and aging. Critical Reviews in Food Science and Nutrition, 62 (13), 3509–3534. doi: https://doi.org/10.1080/10408398.2020.1867054
  7. Efremova, I., Maslennikov, R., Poluektova, E., Zharkova, M., Kudryavtseva, A., Krasnov, G. et al. (2023). Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms, 11 (9), 2202. doi: https://doi.org/10.3390/microorganisms11092202
  8. Zuo, K., Fang, C., Liu, Z., Fu, Y., Liu, Y., Liu, L., Wang, Y. et al. (2022). Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling. International Journal of Biological Sciences, 18 (10), 4219–4232. doi: https://doi.org/10.7150/ijbs.70644
  9. Chen, K., Zheng, X., Feng, M., Li, D., Zhang, H. (2017). Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Frontiers in Physiology, 8. doi: https://doi.org/10.3389/fphys.2017.00139
  10. Ahmad, A. F., Caparrós-Martin, J. A., Gray, N., Lodge, S., Wist, J., Lee, S., O’Gara, F., Shah, A., Ward, N. C., Dwivedi, G. (2023). Insights into the associations between the gut microbiome, its metabolites, and heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 325 (6), H1325–H1336. doi: https://doi.org/10.1152/ajpheart.00436.2023
  11. McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M. et al. (2023). 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 44 (37), 3627–3639. doi: https://doi.org/10.1093/eurheartj/ehad195
  12. Mitchell, C., Rahko, P. S., Blauwet, L. A., Canaday, B., Finstuen, J. A., Foster, M. C. et al. (2019). Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. Journal of the American Society of Echocardiography, 32 (1), 1–64. doi: https://doi.org/10.1016/j.echo.2018.06.004
  13. Faizi, N., Alvi, Y. (2023). Biostatistics Manual for Health Research. Elsevier. doi: https://doi.org/10.1016/c2022-0-00374-3
  14. Tufano, A., Galderisi, M. (2020). Can echocardiography improve the prediction of thromboembolic risk in atrial fibrillation? Evidences and perspectives. Internal and Emergency Medicine, 15 (6), 935–943. doi: https://doi.org/10.1007/s11739-020-02303-5
  15. Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12 (5), 1474. doi: https://doi.org/10.3390/nu12051474
  16. Bahar-Tokman, H., Demirci, M., Keskin, F., Cagatay, P., Taner, Z., Ozturk-Bakar, Y. et al. (2022). Firmicutes/Bacteroidetes Ratio in the Gut Microbiota and IL-1β, IL-6, IL-8, TLR2, TLR4, TLR5 Gene Expressions in Type 2 Diabetes. Clinical Laboratory, 68 (09/2022). doi: https://doi.org/10.7754/clin.lab.2022.211244
  17. Amin, N., Liu, J., Bonnechere, B., MahmoudianDehkordi, S., Arnold, M., Batra, R. et al. (2023). Interplay of Metabolome and Gut Microbiome in Individuals With Major Depressive Disorder vs Control Individuals. JAMA Psychiatry, 80 (6), 597–609. doi: https://doi.org/10.1001/jamapsychiatry.2023.0685
  18. Kasahara, K., Kerby, R. L., Zhang, Q., Pradhan, M., Mehrabian, M., Lusis, A. J., Bergström, G., Bäckhed, F., Rey, F. E. (2023). Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host & Microbe, 31 (6), 1038–1053.e10. doi: https://doi.org/10.1016/j.chom.2023.05.011
  19. Nendl, A., Raju, S. C., Broch, K., Mayerhofer, C. C. K., Holm, K., Halvorsen, B. et al. (2023). Intestinal fatty acid binding protein is associated with cardiac function and gut dysbiosis in chronic heart failure. Frontiers in Cardiovascular Medicine, 10. doi: https://doi.org/10.3389/fcvm.2023.1160030
  20. Tsai, H.-J., Tsai, W.-C., Hung, W.-C., Hung, W.-W., Chang, C.-C., Dai, C.-Y., Tsai, Y.-C. (2021). Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients, 13 (8), 2679. doi: https://doi.org/10.3390/nu13082679
  21. Luo, Y., Zhang, Y., Han, X., Yuan, Y., Zhou, Y., Gao, Y. et al. (2022). Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine, 82, 104087. doi: https://doi.org/10.1016/j.ebiom.2022.104087S
  22. Sharma, R. K., Yang, T., Oliveira, A. C., Lobaton, G. O., Aquino, V., Kim, S. et al. (2019). Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension. Circulation Research, 124 (5), 727–736. doi: https://doi.org/10.1161/circresaha.118.313882
  23. Anderson, G., Mazzoccoli, G. (2019). Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. International Journal of Molecular Sciences, 20 (16), 4068. doi: https://doi.org/10.3390/ijms20164068
Atrial fibrillation in coronary artery disease patients: gut microbiota composition and echocardiography indexes

Downloads

Published

2023-11-30

How to Cite

Melnychuk, I., & Sharayeva, M. (2023). Atrial fibrillation in coronary artery disease patients: gut microbiota composition and echocardiography indexes. ScienceRise: Medical Science, (6 (57), 10–18. https://doi.org/10.15587/2519-4798.2023.297055

Issue

Section

Medical Science