Main mechanisms of thrombotic complications among patients with community-acquired pneumonia combined with coronavirus infection
DOI:
https://doi.org/10.15587/2519-4798.2025.329831Keywords:
CОVІD-19, SАRS-CоV-2, community-acquired pneumonia, mechanisms of complications, inflammation, thrоmbоtіc complications, endothelial dysfunctionAbstract
The review article is devoted to the pathogenesis of complications in patients with community-acquired pneumonia associated with coronavirus infection. The current understanding of the pathogenetic mechanisms of SARS-CoV-2 and the progression of COVID-19 indicates complex changes in the neurohumoral status. Understanding the pathogenetic mechanisms of complications in patients with COVID-19 makes it possible to select biomarkers for risk stratification and understand the clinical context of the disease.
The aim of the study: to determine the main mechanisms of thrombotic complications in patients with community-acquired pneumonia associated with coronavirus infection.
Materials and methods: using the Internet resources of scientometric databases PubMed, Web of Science, and SCOPUS, a retrospective analysis of the literature on this topic for the period 2020-2024 was carried out.
Results: A persistent inflammatory state in severe and critically ill patients with COVID-19 is an important trigger of the coagulation cascade. It is important to remember that thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ failure and increased mortality. Therefore, the literature review identified the main pathogenetic mechanisms of complications in patients with COVID-19, which allowed us to select the appropriate laboratory tests necessary to predict the course of the disease. An understanding of the pathophysiology of COVID-19 in terms of immune-mediated inflammation and endothelial dysfunction makes it possible to include more appropriate adjunctive treatments in the patient management regimen.
Conclusion. Understanding the underlying mechanisms of complications in patients with community-acquired pneumonia in combination with coronavirus infection allows the selection of biomarkers to predict disease progression. Thrombotic complications are markers of severe COVID-19, and information on the pathogenetic mechanisms of their occurrence facilitates understanding of the clinical picture of the disease. An understanding of the pathophysiology of COVID-19 makes it possible to incorporate more appropriate adjunctive therapy into patient management protocols
References
- Perico, L., Benigni, A., Casiraghi, F., Ng, L. F. P., Renia, L., Remuzzi, G. (2020). Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 17 (1), 46–64. https://doi.org/10.1038/s41581-020-00357-4
- Meinhardt, J., Streit, S., Dittmayer, C., Manitius, R. v., Radbruch, H., Heppner, F. L. (2023). The neurobiology of SARS-CoV-2 infection. Nature Reviews Neuroscience, 25 (1), 30–42. https://doi.org/10.1038/s41583-023-00769-8
- Varghese, G. M., John, R., Manesh, A., Karthik, R., Abraham, O. C. (2020). Clinical management of COVID-19. Indian Journal of Medical Research, 151 (5), 401–410. https://doi.org/10.4103/ijmr.ijmr_957_20
- Mehta, O. P., Bhandari, P., Raut, A., Kacimi, S. E. O., Huy, N. T. (2021). Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.582932
- Sun, S.-H., Chen, Q., Gu, H.-J., Yang, G., Wang, Y.-X., Huang, X.-Y. et al. (2020). A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host & Microbe, 28 (1), 124–133.e4. https://doi.org/10.1016/j.chom.2020.05.020
- Wan, D., Du, T., Hong, W., Chen, L., Que, H., Lu, S., Peng, X. (2021). Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduction and Targeted Therapy, 6 (1). https://doi.org/10.1038/s41392-021-00818-7
- Li, C., He, Q., Qian, H., Liu, J. (2021). Overview of the pathogenesis of COVID‑19 (Review). Experimental and Therapeutic Medicine, 22 (3). https://doi.org/10.3892/etm.2021.10444
- Gusev, E., Sarapultsev, A., Hu, D., Chereshnev, V. (2021). Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). International Journal of Molecular Sciences, 22 (14), 7582. https://doi.org/10.3390/ijms22147582
- Zhang, H., Penninger, J. M., Li, Y., Zhong, N., Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46 (4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
- Angeli, F., Zappa, M., Verdecchia, P. (2023). Rethinking the Role of the Renin-Angiotensin System in the Pandemic Era of SARS-CoV-2. Journal of Cardiovascular Development and Disease, 10 (1), 14. https://doi.org/10.3390/jcdd10010014
- Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J., Navis, G. J., Gordijn, S. J. et al. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology, 251 (3), 228–248. https://doi.org/10.1002/path.5471
- Li, T., Lu, H., Zhang, W. (2020). Clinical observation and management of COVID-19 patients. Emerging Microbes & Infections, 9 (1), 687–690. https://doi.org/10.1080/22221751.2020.1741327
- Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z. et al. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine, 382 (12), 1177–1179. https://doi.org/10.1056/nejmc2001737
- To, K. K.-W., Tsang, O. T.-Y., Leung, W.-S., Tam, A. R., Wu, T.-C., Lung, D. C. et al. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 20 (5), 565–574. https://doi.org/10.1016/s1473-3099(20)30196-1
- Hanley, B., Lucas, S. B., Youd, E., Swift, B., Osborn, M. (2020). Autopsy in suspected COVID-19 cases. Journal of Clinical Pathology, 73 (5), 239–242. https://doi.org/10.1136/jclinpath-2020-206522
- Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. et al. (2020). Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy, 75 (7), 1564–1581. https://doi.org/10.1111/all.14364
- Lin, L., Lu, L., Cao, W., Li, T. (2020). Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging Microbes & Infections, 9 (1), 727–732. https://doi.org/10.1080/22221751.2020.1746199
- Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
- Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3
- Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C. et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8 (4), 420–422. https://doi.org/10.1016/s2213-2600(20)30076-x
- Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., Delabranche, X. et al. (2020). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Medicine, 46 (6), 1089–1098. https://doi.org/10.1007/s00134-020-06062-x
- Baselga, M. T., Fernández, M. L., Marín, A., Fernández-Capitán, C., Lorenzo, A., Martínez-Alés, G., Quintana-Díaz, M. (2022). Trombosis y COVID-19: revisión de alcance. Acta Colombiana de Cuidado Intensivo, 22 (1), 11–23. https://doi.org/10.1016/j.acci.2020.09.002
- Conway, E. M., Mackman, N., Warren, R. Q., Wolberg, A. S., Mosnier, L. O., Campbell, R. A. et al. (2022). Understanding COVID-19-associated coagulopathy. Nature Reviews Immunology, 22 (10), 639–649. https://doi.org/10.1038/s41577-022-00762-9
- Iba, T., Levy, J. H., Levi, M., Thachil, J. (2020). Coagulopathy in COVID‐19. Journal of Thrombosis and Haemostasis, 18 (9), 2103–2109. https://doi.org/10.1111/jth.14975
- Ma, L., Willey, J. (2022). The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. Thrombosis Update, 8, 100117. https://doi.org/10.1016/j.tru.2022.100117
- Hazarapetyan, L., Zelveian, P., Grigoryan, S. (2023). Inflammation and Coagulation are Two Interconnected Pathophysiological Pathways in Atrial Fibrillation Pathogenesis. Journal of Inflammation Research, 16, 4967–4975. https://doi.org/10.2147/jir.s429892
- Al-Ani, F., Chehade, S., Lazo-Langner, A. (2020). Thrombosis risk associated with COVID-19 infection. A scoping review. Thrombosis Research, 192, 152–160. https://doi.org/10.1016/j.thromres.2020.05.039
- Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M. et al. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145–147. https://doi.org/10.1016/j.thromres.2020.04.013
- Cui, S., Chen, S., Li, X., Liu, S., Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18 (6), 1421–1424. https://doi.org/10.1111/jth.14830
- Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D., Kant, K. M. et al. (2020). Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis Research, 191, 148–150. https://doi.org/10.1016/j.thromres.2020.04.041
- Lax, S. F., Skok, K., Zechner, P., Kessler, H. H., Kaufmann, N., Koelblinger, C. et al. (2020). Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome. Annals of Internal Medicine, 173 (5), 350–361. https://doi.org/10.7326/m20-2566
- Wichmann, D., Sperhake, J.-P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A. et al. (2020). Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Annals of Internal Medicine, 173 (4), 268–277. https://doi.org/10.7326/m20-2003
- Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P. et al. (2020). Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. New England Journal of Medicine, 382 (20). https://doi.org/10.1056/nejmc2009787
- Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q. et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology, 77 (6), 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
- Ali, M. A. M., Spinler, S. A. (2021). COVID-19 and thrombosis: From bench to bedside. Trends in Cardiovascular Medicine, 31 (3), 143–160. https://doi.org/10.1016/j.tcm.2020.12.004
- Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A. K., Reznikov, L. R. et al. (2015). Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. Journal of Infectious Diseases, 213 (5), 712–722. https://doi.org/10.1093/infdis/jiv499
- McFadyen, J. D., Stevens, H., Peter, K. (2020). The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circulation Research, 127 (4), 571–587. https://doi.org/10.1161/circresaha.120.317447
- Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F. et al. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine, 383 (2), 120–128. https://doi.org/10.1056/nejmoa2015432
- Carsana, L., Sonzogni, A., Nasr, A., Rossi, R. S., Pellegrinelli, A., Zerbi, P. et al. (2020). Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet Infectious Diseases, 20 (10), 1135–1140. https://doi.org/10.1016/s1473-3099(20)30434-5
- Dolhnikoff, M., Duarte‐Neto, A. N., de Almeida Monteiro, R. A., da Silva, L. F. F., de Oliveira, E. P., Saldiva, P. H. N. et al. (2020). Pathological evidence of pulmonary thrombotic phenomena in severe COVID‐19. Journal of Thrombosis and Haemostasis, 18 (6), 1517–1519. https://doi.org/10.1111/jth.14844
- Otifi, H. M., Adiga, B. K. (2022). Endothelial Dysfunction in Covid-19 Infection. The American Journal of the Medical Sciences, 363 (4), 281–287. https://doi.org/10.1016/j.amjms.2021.12.010
- Gavriilaki, E., Anyfanti, P., Gavriilaki, M., Lazaridis, A., Douma, S., Gkaliagkousi, E. (2020). Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Current Hypertension Reports, 22 (9). https://doi.org/10.1007/s11906-020-01078-6
- Zhou, B., Zhao, W., Feng, R., Zhang, X., Li, X., Zhou, Y. et al. (2020). The pathological autopsy of coronavirus disease 2019 (COVID-2019) in China: a review. Pathogens and Disease, 78 (3). https://doi.org/10.1093/femspd/ftaa026
- Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W. et al. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology, 21(5), 319–329. https://doi.org/10.1038/s41577-021-00536-9
- Pons, S., Fodil, S., Azoulay, E., Zafrani, L. (2020). The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care, 24 (1). https://doi.org/10.1186/s13054-020-03062-7

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Natalia Skorokhodova, Oleh Yatsenko, Anastasia Karaban

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.