Main mechanisms of thrombotic complications among patients with community-acquired pneumonia combined with coronavirus infection

Authors

DOI:

https://doi.org/10.15587/2519-4798.2025.329831

Keywords:

CОVІD-19, SАRS-CоV-2, community-acquired pneumonia, mechanisms of complications, inflammation, thrоmbоtіc complications, endothelial dysfunction

Abstract

The review article is devoted to the pathogenesis of complications in patients with community-acquired pneumonia associated with coronavirus infection. The current understanding of the pathogenetic mechanisms of SARS-CoV-2 and the progression of COVID-19 indicates complex changes in the neurohumoral status. Understanding the pathogenetic mechanisms of complications in patients with COVID-19 makes it possible to select biomarkers for risk stratification and understand the clinical context of the disease.

The aim of the study: to determine the main mechanisms of thrombotic complications in patients with community-acquired pneumonia associated with coronavirus infection.

Materials and methods: using the Internet resources of scientometric databases PubMed, Web of Science, and SCOPUS, a retrospective analysis of the literature on this topic for the period 2020-2024 was carried out.

Results: A persistent inflammatory state in severe and critically ill patients with COVID-19 is an important trigger of the coagulation cascade. It is important to remember that thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ failure and increased mortality. Therefore, the literature review identified the main pathogenetic mechanisms of complications in patients with COVID-19, which allowed us to select the appropriate laboratory tests necessary to predict the course of the disease. An understanding of the pathophysiology of COVID-19 in terms of immune-mediated inflammation and endothelial dysfunction makes it possible to include more appropriate adjunctive treatments in the patient management regimen.

Conclusion. Understanding the underlying mechanisms of complications in patients with community-acquired pneumonia in combination with coronavirus infection allows the selection of biomarkers to predict disease progression. Thrombotic complications are markers of severe COVID-19, and information on the pathogenetic mechanisms of their occurrence facilitates understanding of the clinical picture of the disease. An understanding of the pathophysiology of COVID-19 makes it possible to incorporate more appropriate adjunctive therapy into patient management protocols

Author Biographies

Natalia Skorokhodova, Zaporizhzhya State Medical and Pharmaceutical University

Doctor of Medical Sciences, Professor

Department of Phthisiology and Pulmonology

Oleh Yatsenko, Zaporizhzhya State Medical and Pharmaceutical University

PhD, Assistant

Department of Internal Medicine No. 3

Anastasia Karaban, Odesa National Medical University

Intern

Department of Family Medicine, General Practice and Outpatient Therapy

References

  1. Perico, L., Benigni, A., Casiraghi, F., Ng, L. F. P., Renia, L., Remuzzi, G. (2020). Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 17 (1), 46–64. https://doi.org/10.1038/s41581-020-00357-4
  2. Meinhardt, J., Streit, S., Dittmayer, C., Manitius, R. v., Radbruch, H., Heppner, F. L. (2023). The neurobiology of SARS-CoV-2 infection. Nature Reviews Neuroscience, 25 (1), 30–42. https://doi.org/10.1038/s41583-023-00769-8
  3. Varghese, G. M., John, R., Manesh, A., Karthik, R., Abraham, O. C. (2020). Clinical management of COVID-19. Indian Journal of Medical Research, 151 (5), 401–410. https://doi.org/10.4103/ijmr.ijmr_957_20
  4. Mehta, O. P., Bhandari, P., Raut, A., Kacimi, S. E. O., Huy, N. T. (2021). Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.582932
  5. Sun, S.-H., Chen, Q., Gu, H.-J., Yang, G., Wang, Y.-X., Huang, X.-Y. et al. (2020). A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host & Microbe, 28 (1), 124–133.e4. https://doi.org/10.1016/j.chom.2020.05.020
  6. Wan, D., Du, T., Hong, W., Chen, L., Que, H., Lu, S., Peng, X. (2021). Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduction and Targeted Therapy, 6 (1). https://doi.org/10.1038/s41392-021-00818-7
  7. Li, C., He, Q., Qian, H., Liu, J. (2021). Overview of the pathogenesis of COVID‑19 (Review). Experimental and Therapeutic Medicine, 22 (3). https://doi.org/10.3892/etm.2021.10444
  8. Gusev, E., Sarapultsev, A., Hu, D., Chereshnev, V. (2021). Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). International Journal of Molecular Sciences, 22 (14), 7582. https://doi.org/10.3390/ijms22147582
  9. Zhang, H., Penninger, J. M., Li, Y., Zhong, N., Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46 (4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
  10. Angeli, F., Zappa, M., Verdecchia, P. (2023). Rethinking the Role of the Renin-Angiotensin System in the Pandemic Era of SARS-CoV-2. Journal of Cardiovascular Development and Disease, 10 (1), 14. https://doi.org/10.3390/jcdd10010014
  11. Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J., Navis, G. J., Gordijn, S. J. et al. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology, 251 (3), 228–248. https://doi.org/10.1002/path.5471
  12. Li, T., Lu, H., Zhang, W. (2020). Clinical observation and management of COVID-19 patients. Emerging Microbes & Infections, 9 (1), 687–690. https://doi.org/10.1080/22221751.2020.1741327
  13. Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z. et al. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine, 382 (12), 1177–1179. https://doi.org/10.1056/nejmc2001737
  14. To, K. K.-W., Tsang, O. T.-Y., Leung, W.-S., Tam, A. R., Wu, T.-C., Lung, D. C. et al. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 20 (5), 565–574. https://doi.org/10.1016/s1473-3099(20)30196-1
  15. Hanley, B., Lucas, S. B., Youd, E., Swift, B., Osborn, M. (2020). Autopsy in suspected COVID-19 cases. Journal of Clinical Pathology, 73 (5), 239–242. https://doi.org/10.1136/jclinpath-2020-206522
  16. Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. et al. (2020). Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy, 75 (7), 1564–1581. https://doi.org/10.1111/all.14364
  17. Lin, L., Lu, L., Cao, W., Li, T. (2020). Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging Microbes & Infections, 9 (1), 727–732. https://doi.org/10.1080/22221751.2020.1746199
  18. Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
  19. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3
  20. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C. et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8 (4), 420–422. https://doi.org/10.1016/s2213-2600(20)30076-x
  21. Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., Delabranche, X. et al. (2020). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Medicine, 46 (6), 1089–1098. https://doi.org/10.1007/s00134-020-06062-x
  22. Baselga, M. T., Fernández, M. L., Marín, A., Fernández-Capitán, C., Lorenzo, A., Martínez-Alés, G., Quintana-Díaz, M. (2022). Trombosis y COVID-19: revisión de alcance. Acta Colombiana de Cuidado Intensivo, 22 (1), 11–23. https://doi.org/10.1016/j.acci.2020.09.002
  23. Conway, E. M., Mackman, N., Warren, R. Q., Wolberg, A. S., Mosnier, L. O., Campbell, R. A. et al. (2022). Understanding COVID-19-associated coagulopathy. Nature Reviews Immunology, 22 (10), 639–649. https://doi.org/10.1038/s41577-022-00762-9
  24. Iba, T., Levy, J. H., Levi, M., Thachil, J. (2020). Coagulopathy in COVID‐19. Journal of Thrombosis and Haemostasis, 18 (9), 2103–2109. https://doi.org/10.1111/jth.14975
  25. Ma, L., Willey, J. (2022). The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. Thrombosis Update, 8, 100117. https://doi.org/10.1016/j.tru.2022.100117
  26. Hazarapetyan, L., Zelveian, P., Grigoryan, S. (2023). Inflammation and Coagulation are Two Interconnected Pathophysiological Pathways in Atrial Fibrillation Pathogenesis. Journal of Inflammation Research, 16, 4967–4975. https://doi.org/10.2147/jir.s429892
  27. Al-Ani, F., Chehade, S., Lazo-Langner, A. (2020). Thrombosis risk associated with COVID-19 infection. A scoping review. Thrombosis Research, 192, 152–160. https://doi.org/10.1016/j.thromres.2020.05.039
  28. Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M. et al. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145–147. https://doi.org/10.1016/j.thromres.2020.04.013
  29. Cui, S., Chen, S., Li, X., Liu, S., Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18 (6), 1421–1424. https://doi.org/10.1111/jth.14830
  30. Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D., Kant, K. M. et al. (2020). Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis Research, 191, 148–150. https://doi.org/10.1016/j.thromres.2020.04.041
  31. Lax, S. F., Skok, K., Zechner, P., Kessler, H. H., Kaufmann, N., Koelblinger, C. et al. (2020). Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome. Annals of Internal Medicine, 173 (5), 350–361. https://doi.org/10.7326/m20-2566
  32. Wichmann, D., Sperhake, J.-P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A. et al. (2020). Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Annals of Internal Medicine, 173 (4), 268–277. https://doi.org/10.7326/m20-2003
  33. Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P. et al. (2020). Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. New England Journal of Medicine, 382 (20). https://doi.org/10.1056/nejmc2009787
  34. Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q. et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology, 77 (6), 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
  35. Ali, M. A. M., Spinler, S. A. (2021). COVID-19 and thrombosis: From bench to bedside. Trends in Cardiovascular Medicine, 31 (3), 143–160. https://doi.org/10.1016/j.tcm.2020.12.004
  36. Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A. K., Reznikov, L. R. et al. (2015). Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. Journal of Infectious Diseases, 213 (5), 712–722. https://doi.org/10.1093/infdis/jiv499
  37. McFadyen, J. D., Stevens, H., Peter, K. (2020). The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circulation Research, 127 (4), 571–587. https://doi.org/10.1161/circresaha.120.317447
  38. Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F. et al. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine, 383 (2), 120–128. https://doi.org/10.1056/nejmoa2015432
  39. Carsana, L., Sonzogni, A., Nasr, A., Rossi, R. S., Pellegrinelli, A., Zerbi, P. et al. (2020). Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet Infectious Diseases, 20 (10), 1135–1140. https://doi.org/10.1016/s1473-3099(20)30434-5
  40. Dolhnikoff, M., Duarte‐Neto, A. N., de Almeida Monteiro, R. A., da Silva, L. F. F., de Oliveira, E. P., Saldiva, P. H. N. et al. (2020). Pathological evidence of pulmonary thrombotic phenomena in severe COVID‐19. Journal of Thrombosis and Haemostasis, 18 (6), 1517–1519. https://doi.org/10.1111/jth.14844
  41. Otifi, H. M., Adiga, B. K. (2022). Endothelial Dysfunction in Covid-19 Infection. The American Journal of the Medical Sciences, 363 (4), 281–287. https://doi.org/10.1016/j.amjms.2021.12.010
  42. Gavriilaki, E., Anyfanti, P., Gavriilaki, M., Lazaridis, A., Douma, S., Gkaliagkousi, E. (2020). Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Current Hypertension Reports, 22 (9). https://doi.org/10.1007/s11906-020-01078-6
  43. Zhou, B., Zhao, W., Feng, R., Zhang, X., Li, X., Zhou, Y. et al. (2020). The pathological autopsy of coronavirus disease 2019 (COVID-2019) in China: a review. Pathogens and Disease, 78 (3). https://doi.org/10.1093/femspd/ftaa026
  44. Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W. et al. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology, 21(5), 319–329. https://doi.org/10.1038/s41577-021-00536-9
  45. Pons, S., Fodil, S., Azoulay, E., Zafrani, L. (2020). The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care, 24 (1). https://doi.org/10.1186/s13054-020-03062-7
Main mechanisms of thrombotic complications among patients with community-acquired pneumonia combined with coronavirus infection

Downloads

Published

2025-05-16

How to Cite

Skorokhodova, N., Yatsenko, O., & Karaban, A. (2025). Main mechanisms of thrombotic complications among patients with community-acquired pneumonia combined with coronavirus infection. ScienceRise: Medical Science, (1 (62), 14–19. https://doi.org/10.15587/2519-4798.2025.329831

Issue

Section

Medical Science