Cell-molecular mechanisms of progression of ophthalmological pathology on the background of influence of environmental factors. Literature review

Authors

DOI:

https://doi.org/10.15587/2519-4798.2021.223486

Keywords:

pathological processes of the organ of vision, matrix metalloproteinases, cytokines, vascular endothelial growth factor, p53 protein, heavy metals

Abstract

Modern scientists are increasingly paying attention to the molecular mechanisms of diseases of the visual organ in conditions of anthropogenic pollution. Environmental pollution is mainly due to atmospheric emissions from the metallurgical, automotive, aviation and petrochemical industries, waste from livestock farms and due to the use of mineral fertilizers and pesticides. Ukraine ranks one of the first in Europe in terms of the amount of industrial dirt per capita.

The aim of this literature review was to analyze the role of extra- and intracellular protein structures and molecular mechanisms of some pathological processes of the visual organ that occur under the influence of anthropogenic stress on the human body.

Material and methods. Scientific publications in foreign and Ukranian journals on relevant topics in the last 5 years, the Internet resources.

Research results and their discussion. The literature review expanded the scientific understanding of the role of reparative enzyme (MGMT), vascular endothelial growth factor, Bcl-2 family proteins, p53 and Ki 67 proteins, matrix metalloproteinases in some ophthalmic pathology. Anthropoecological environmental factors have been shown to cause oxidative stress due to mitochondrial dysfunction and apoptosis, which are a component of a complex pathophysiological process in the most common diseases of the visual analyzer.

Conclusions. The study of molecular mechanisms of occurrence and progression of diseases of the visual organ with the participation of protein factors makes it possible to expand the understanding of the pathogenetic links of their development in order to predict the course of the pathological process, adequate treatment and prevention

Author Biographies

Olga Nedtzvetskaya, Kharkiv Medical Academy of Postgraduate Education

MD, Professor

Department of Ophthalmology

Irina Bagmut, Kharkiv Medical Academy of Postgraduate Education

MD, Professor, Head of Department

Department of Clinical Pathological Physiology, Topographic Anatomy and Operative Surgery

Irina Soboleva , Kharkiv Medical Academy of Postgraduate Education

MD, Professor

Department of Ophthalmology

Irina Pastukh , Kharkiv Medical Academy of Postgraduate Education

PhD, Associate Professor

Department of Ophthalmology

Natalia Goncharova, Kharkiv Medical Academy of Postgraduate Education

PhD, Associate Professor

Department of Ophthalmology

References

  1. Khvesyk, M. A.; Khvesyk, M. A. (Ed.) (2014) .Ekolohichna i pryrodno-tekhnohenna bezpeka Ukrainy v rehionalnomu vymiri. Kyiv: In-t ekonomiky pryrodokorystuvannia ta staloho rozvytku, 339.
  2. Yakovenko, O. V., Kuraieva, I. V., Kroik, H. A. et. al. (2015). Heokhimichni osoblyvosti rozpodilu vazhkykh metaliv u gruntakh zony vplyvu pidpryiemstv kolorovoi metalurhii. Visnyk Dnipropetrovskoho universytetu. Seriia: Heolohiia, heohrafiia, 23 (1), 152–157.
  3. Kuraeva, Y. V. (2016). Geochemical indicators of the ecological state of the contaminated soil. Dnipropetrovsk University Bulletin. Series: geology, geography, 24 (2), 61–69. doi: http://doi.org/10.15421/111634
  4. Fu, Z., Xi, S. (2019). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30 (3), 167–176. doi: http://doi.org/10.1080/15376516.2019.1701594
  5. Le, D.-V., Jiang, J.-H. (2020). Fluorescence determination of the activity of O6-methylguanine-DNA methyltransferase based on the activation of restriction endonuclease and the use of graphene oxide. Microchimica Acta, 187 (5). doi: http://doi.org/10.1007/s00604-020-04280-0
  6. Xing, X., He, Z., Wang, Z., Mo, Z., Chen, L., Yang, B. et. al. (2020). Association between H3K36me3 modification and methylation of LINE-1 and MGMT in peripheral blood lymphocytes of PAH-exposed workers. Toxicology Research, 9 (5), 661–668. doi: http://doi.org/10.1093/toxres/tfaa074
  7. Wang, K., Chen, D., Qian, Z., Cui, D., Gao, L., Lou, M. (2017). Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell International, 17 (1). doi: http://doi.org/10.1186/s12935-017-0491-x
  8. Yu, W., Zhang, L., Wei, Q., Shao, A. (2020). O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Frontiers in Oncology, 9. doi: http://doi.org/10.3389/fonc.2019.01547
  9. Njuma, O. J., Su, Y., Guengerich, F. P. (2019). The abundant DNA adduct N7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. Journal of Biological Chemistry, 294 (26), 10253–10265. doi: http://doi.org/10.1074/jbc.ra119.008986
  10. Yazici, H., Wu, H., Tigli, H., Yilmaz, E., Kebudi, R., Santella, R. (2020). High levels of global genome methylation in patients with retinoblastoma. Oncology Letters, 20 (1), 715–723. doi: http://doi.org/10.3892/ol.2020.11613
  11. Li, P., Yu, H., Zhang, G., Kang, L., Qin, B., Cao, Y. et. al. (2020). Identification and Characterization of N6-Methyladenosine CircRNAs and Methyltransferases in the Lens Epithelium Cells From Age-Related Cataract. Investigative Opthalmology & Visual Science, 61 (10), 13. doi: http://doi.org/10.1167/iovs.61.10.13
  12. Vynohradova, Yu. V. (2015). Issledovanye povrezhdenyia y protsessov vosstanovlenyia setchatky hlaza mishei posle obluchenyia uskorennimy protonamy i deistvyia metylnytrozomochevyni. Dubna, 23.
  13. Deng, G., Moran, E. P., Cheng, R., Matlock, G., Zhou, K., Moran, D. et. al. (2017). Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 58 (12), 5030–5042. doi: http://doi.org/10.1167/iovs.16-21402
  14. Savage, S. R., McCollum, G. W., Yang, R., Penn, J. S. (2015). RNA-seq identifies a role for the PPARβ/δ inverse agonist GSK0660 in the regulation of TNFα-induced cytokine signaling in retinal endothelial cells. Molecular Vision, 21, 568–576.
  15. Zografos, L. J., Andrews, E., Wolin, D. L., Calingaert, B., Davenport, E. K., Hollis, K. A. et. al. (2019). Physician and Patient Knowledge of Safety and Safe Use Information for Aflibercept in Europe: Evaluation of Risk-Minimization Measures. Pharmaceutical Medicine, 33 (3), 219–233. doi: http://doi.org/10.1007/s40290-019-00279-y
  16. Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., Lopez-Galvez, M., Navarro-Gil, R., Verges, R. (2016). Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. Journal of Diabetes Research, 2016, 1–17. doi: http://doi.org/10.1155/2016/2156273
  17. Shalchi, Z., Mahroo, O., Bunce, C., Mitry, D. (2020). Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion. Cochrane Database of Systematic Reviews, 7 (7). doi: http://doi.org/10.1002/14651858.cd009510.pub3
  18. Joseph, C., Mangani, A. S., Gupta, V., Chitranshi, N., Shen, T., Dheer, Y. et. al. (2020). Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging and Disease, 11 (4), 946–466. doi: http://doi.org/10.14336/ad.2019.0923
  19. Shpak, A. A., Guekht, A. B., Druzhkova, T. A., Kozlova, K. I., Gulyaeva, N. V. (2017). Brain-Derived Neurotrophic Factor in Patients with Primary Open-Angle Glaucoma and Age-related Cataract. Current Eye Research, 43 (2), 224–231. doi: http://doi.org/10.1080/02713683.2017.1396617
  20. Awais, R., Spiller, D. G., White, M. R. H., Paraoan, L. (2016). p63 is required beside p53 for PERP-mediated apoptosis in uveal melanoma. British Journal of Cancer, 115 (8), 983–992. doi: http://doi.org/10.1038/bjc.2016.269
  21. Xiao, F., Li, Y., Dai, L., Deng, Y., Zou, Y., Li, P. et. al. (2012). Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes. International Journal of Molecular Medicine, 30 (3), 629–635. doi: http://doi.org/10.3892/ijmm.2012.1031
  22. Naoi, M., Wu, Y., Shamoto-Nagai, M., Maruyama, W. (2019). Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. International Journal of Molecular Sciences, 20 (10), 2451. doi: http://doi.org/10.3390/ijms20102451
  23. Boutry, J., Dujon, A. M., Gerard, A.-L., Tissot, S., Macdonald, N., Schultz, A. et. al. (2020). Ecological and Evolutionary Consequences of Anticancer Adaptations. iScience, 23 (11), 101716. doi: http://doi.org/10.1016/j.isci.2020.101716
  24. Ahn, Y. J., Kim, M. S., Chung, S. K. (2016). Calpain and Caspase-12 Expression in Lens Epithelial Cells of Diabetic Cataracts. American Journal of Ophthalmology, 167, 31–37. doi: http://doi.org/10.1016/j.ajo.2016.04.009
  25. Chitranshi, N., Dheer, Y., Abbasi, M., You, Y., Graham, S. L., Gupta, V. (2018). Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Current Neuropharmacology, 16 (7), 1018–1035. doi: http://doi.org/10.2174/1570159x16666180419121247
  26. Vennam, S., Georgoulas, S., Khawaja, A., Chua, S., Strouthidis, N. G., Foster, P. J. (2019). Heavy metal toxicity and the aetiology of glaucoma. Eye, 34 (1), 129–137. doi: http://doi.org/10.1038/s41433-019-0672-z
  27. Conley, S. M., McKay, B. S., Jay Gandolfi, A., Daniel Stamer, W. (2006). Alterations in human trabecular meshwork cell homeostasis by selenium. Experimental Eye Research, 82 (4), 637–647. doi: http://doi.org/10.1016/j.exer.2005.08.024
  28. Vafadari, B., Salamian, A., Kaczmarek, L. (2016). MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. Journal of Neurochemistry, 139, 91–114. doi: http://doi.org/10.1111/jnc.13415
  29. Singh, M., Tyagi, S. C. (2017). Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. International Journal of Ophthalmology, 10 (8), 1308–1318. doi: http://doi.org/10.18240/ijo.2017.08.20
  30. O’Callaghan, J., Cassidy, P. S., Humphries, P. (2017). Open-angle glaucoma: therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opinion on Therapeutic Targets, 21 (11), 1037–1050. doi: http://doi.org/10.1080/14728222.2017.1386174
  31. Levanova, O. N., Sokolov, V. A., Likhvantseva, V. G. i dr. (2017). Korreliatsionnii analiz klinicheskikh, morfometricheskikh i funktsionalnykh pokazatelei s matriksnymi metalloproteinazami-2 i -9 pri pervichnoi otkrytougolnoi glaukome. Prakticheskaia meditsina, 3 (104), 54–59.
  32. Zhuravleva, A. N. (2010). Skleralnii komponent v glaukomnom protsesse. Moscow, 26.
  33. Määttä, M., Tervahartiala, T., Harju, M., Airaksinen, J., Autio-Harmainen, H., Sorsa, T. (2005). Matrix Metalloproteinases and Their Tissue Inhibitors in Aqueous Humor of Patients With Primary Open-Angle Glaucoma, Exfoliation Syndrome, and Exfoliation Glaucoma. Journal of Glaucoma, 14 (1), 64–69. doi: http://doi.org/10.1097/01.ijg.0000145812.39224.0a
  34. Schneider, M., Fuchshofer, R. (2016). The role of astrocytes in optic nerve head fibrosis in glaucoma. Experimental Eye Research, 142, 49–55. doi: http://doi.org/10.1016/j.exer.2015.08.014
  35. Feng, Q. Y., Hu, Z. X., Song, X. L., Pan, H. W. (2017). Aberrant expression of genes and proteins in pterygium and their implications in the pathogenesis. International Journal of Ophthalmology, 10 (6), 973–981. doi: http://doi.org/10.18240/ijo.2017.06.22
  36. Belinsky, I., Murchison, A. P., Evans, J. J., Andrews, D. W., Farrell, C. J., Casey, J. P. et. al. (2018). Spheno-Orbital Meningiomas: An Analysis Based on World Health Organization Classification and Ki-67 Proliferative Index. Ophthalmic Plastic & Reconstructive Surgery, 34 (2), 143–150. doi: http://doi.org/10.1097/iop.0000000000000904
  37. Su, F. F., Chen, J. L. (2019). Expression and clinical significance of p16 and Ki-67 in malignant melanoma of the conjunctiva. Journal of Biological Regulators and Homeostatic Agents, 33 (3), 821–825.
  38. Turan, M., Turan, G. (2020). Bcl-2, p53, and Ki-67 expression in pterygium and normal conjunctiva and their relationship with pterygium recurrence. European Journal of Ophthalmology, 30 (6), 1232–1237. doi: http://doi.org/10.1177/1120672120945903
  39. Rahimi-Esboei, B., Zarei, M., Mohebali, M., Keshavarz Valian, H., Shojaee, S., Mahmoudzadeh, R., Salabati, M. (2018). Serologic Tests of IgG and IgM Antibodies and IgG Avidity for Diagnosis of Ocular Toxoplasmosis. The Korean Journal of Parasitology, 56 (2), 147–152. doi: http://doi.org/10.3347/kjp.2018.56.2.147
  40. Yip, C., Foidart, P., Noël, A., Sounni, N. (2019). MT4-MMP: The GPI-Anchored Membrane-Type Matrix Metalloprotease with Multiple Functions in Diseases. International Journal of Molecular Sciences, 20 (2), 354. doi: http://doi.org/10.3390/ijms20020354
  41. Lee, K.-A., Kim, K.-W., Kim, B.-M., Won, J.-Y., Kim, H.-A., Moon, H.-W. et. al. (2018). Clinical and diagnostic significance of serum immunoglobulin A rheumatoid factor in primary Sjogren’s syndrome. Clinical Oral Investigations, 23 (3), 1415–1423. doi: http://doi.org/10.1007/s00784-018-2545-4

Downloads

Published

2021-01-30

How to Cite

Nedtzvetskaya, O., Bagmut, I., Soboleva , I., Pastukh , I., & Goncharova, N. . (2021). Cell-molecular mechanisms of progression of ophthalmological pathology on the background of influence of environmental factors. Literature review. ScienceRise: Medical Science, (1 (40), 29–33. https://doi.org/10.15587/2519-4798.2021.223486

Issue

Section

Medical Science