Consideration of electronic mean heat transport via a low dimension system

Authors

DOI:

https://doi.org/10.15587/2706-5448.2024.300260

Keywords:

Phase Field Matching Theory (PMFT), tight-binding (TB), Landauer Büttiker formalism, Green's functions

Abstract

The object of research is the complex realm of energy localization and coherent ballistic electronic transport within low-dimensional silicon quantum wires, specifically those doped with germanium atoms. Unlike their three-dimensional counterparts, low-dimensional systems exhibit unique electronic transport behaviors, necessitating novel analytical approaches for a comprehensive understanding. The core of this investigation leverages the Phase Field Matching Theory (PMFT) and the tight-binding (TB) approximation, sophisticated methodologies that enable a deep dive into the quantum mechanical nuances of these systems. Through this lens, we examine the intricate dynamics of dispersion relationships, phase factors, group velocities, and notably, the impact of defects introduced by the germanium doping.

This research meticulously analyzes how these defects affect electronic and thermal conductivities, along with densities of states, offering new insights into the role of Fano resonances in the fluctuation of transmission and reflection spectra. These resonances, we find, are crucially dependent on the nature of the defects, their configuration, and the electronic parameters in their vicinity, underscoring the nuanced interplay between material composition and electronic properties in low-dimensional systems.

The implications of our findings extend far beyond the theoretical. They pave the way for significant advancements in nanotechnology and the design of electronic devices, highlighting the potential for creating more efficient, high-performance components. Furthermore, this work proposes a framework for developing non-destructive testing methodologies that could revolutionize material science by enabling the precise analysis of defects in low-dimensional systems without causing damage. This is particularly critical for the ongoing development of materials with optimized properties for various applications, from electronics to energy storage.

In essence, this research not only enriches our understanding of the physics governing low-dimensional systems but also offers practical insights into leveraging these properties for technological innovation. By bridging the gap between theoretical physics and material science, our study sets the stage for the next generation of electronic components and non-destructive evaluation techniques, marking a significant step forward in the application of quantum mechanics to real-world challenges.

Author Biographies

Zouaneb Aicha, African University Ahmed Draia

Postgraduate Student

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Science and Technology

Elfahem Sakher, African University Ahmed Draia; Environmental Research Center (C.R.E) sis at Alzone

PhD, Lecturer

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Science and Technology

Associate Researcher

Tigrine Rachid, African University Ahmed Draia

Professor

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Science and Technology

Bendoura Abdallah, African University Ahmed Draia

Postgraduate Student

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Science and Technology

Aissa Benselhoub, Environmental Research Center (C.R.E)

Associate Researcher

Environment, Modeling and Climate Change Division

References

  1. Neuhaus, D.-H., Münzer, A. (2007). Industrial Silicon Wafer Solar Cells. Advances in OptoElectronics, 2007, 1–15. doi: https://doi.org/10.1155/2007/24521
  2. Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O. et al. (2012). A single-atom transistor. Nature Nanotechnology, 7 (4), 242–246. doi: https://doi.org/10.1038/nnano.2012.21
  3. Ferrari, A. C., Bonaccorso, F., Fal'Ko, V., Novoselov, K. S., Roche, S., Bøggild, P. et al. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7 (11), 4598–4810.
  4. Waldrop, M. M. (2016). The chips are down for Moore’s law. Nature, 530 (7589), 144–147. doi: https://doi.org/10.1038/530144a
  5. Luo, T., Chen, G. (2013). Nanoscale heat transfer – from computation to experiment. Physical Chemistry Chemical Physics, 15 (10), 3389. doi: https://doi.org/10.1039/c2cp43771f
  6. Luisier, M. (2014). Atomistic simulation of transport phenomena in nanoelectronic devices. Chemical Society Reviews, 43 (13), 4357–4367. doi: https://doi.org/10.1039/c4cs00084f
  7. Agraıt, N., Yeyati, A. L., Van Ruitenbeek, J. M. (2003). Quantum properties of atomic-sized conductors. Physics Reports, 377 (2-3), 81–279. doi: https://doi.org/10.1016/s0370-1573(02)00633-6
  8. Sørensen, H. H. B., Hansen, P. C., Petersen, D. E., Skelboe, S., Stokbro, K. (2009). Efficient wave-function matching approach for quantum transport calculations. Physical Review B, 79 (20). doi: https://doi.org/10.1103/physrevb.79.205322
  9. Nitzan, A., Ratner, M. A. (2003). Electron Transport in Molecular Wire Junctions. Science, 300 (5624), 1384–1389. doi: https://doi.org/10.1126/science.1081572
  10. Ke, Y., Xia, K., Guo, H. (2008). Disorder Scattering in Magnetic Tunnel Junctions: Theory of Nonequilibrium Vertex Correction. Physical Review Letters, 100 (16). doi: https://doi.org/10.1103/physrevlett.100.166805
  11. Markussen, T., Rurali, R., Jauho, A.-P., Brandbyge, M. (2007). Scaling Theory Put into Practice: First-Principles Modeling of Transport in Doped Silicon Nanowires. Physical Review Letters, 99 (7). doi: https://doi.org/10.1103/physrevlett.99.076803
  12. Nozaki, D., Pastawski, H. M., Cuniberti, G. (2010). Controlling the conductance of molecular wires by defect engineering. New Journal of Physics, 12 (6), 063004. doi: https://doi.org/10.1088/1367-2630/12/6/063004
  13. Khater, A., Szczęśniak, D. (2011). A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect. Journal of Physics: Conference Series, 289, 012013. doi: https://doi.org/10.1088/1742-6596/289/1/012013
  14. Szczęśniak, D., Khater, A. (2012). Electronic conductance via atomic wires: a phase field matching theory approach. The European Physical Journal B, 85 (6). doi: https://doi.org/10.1140/epjb/e2012-21055-x
  15. Belayadi, A., Bourahla, B., Mekideche-Chafa, F. (2018). Localized electronic surface states in metallic structureS. Surface Review and Letters, 25 (5), 1850101. doi: https://doi.org/10.1142/s0218625x18501019
  16. Büttiker, M. (1986). Four-Terminal Phase-Coherent Conductance. Physical Review Letters, 57 (14), 1761–1764. doi: https://doi.org/10.1103/physrevlett.57.1761
  17. Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: https://doi.org/10.1147/rd.13.0223
  18. Khomyakov, P. A., Brocks, G., Karpan, V., Zwierzycki, M., Kelly, P. J. (2005). Conductance calculations for quantum wires and interfaces: Mode matching and Green’s functions. Physical Review B, 72 (3). doi: https://doi.org/10.1103/physrevb.72.035450
  19. Mardaani, M., Rabani, H., Esmaeili, A. (2011). An analytical study on electronic density of states and conductance of typical nanowires. Solid State Communications, 151 (13), 928–932. doi: https://doi.org/10.1016/j.ssc.2011.04.010
  20. Rabani, H., Mardaani, M. (2012). Exact analytical results on electronic transport of conjugated polymer junctions: Renormalization method. Solid State Communications, 152 (3), 235–239. doi: https://doi.org/10.1016/j.ssc.2011.09.026
  21. Wu, Y., Childs, P. (2010). Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model. Nanoscale Research Letters, 6 (1). doi: https://doi.org/10.1007/s11671-010-9791-y
  22. Slater, J. C., Koster, G. F. (1954). Simplified LCAO Method for the Periodic Potential Problem. Physical Review, 94 (6), 1498–1524. doi: https://doi.org/10.1103/physrev.94.1498
  23. Harrison, W. A. (2004). Elementary electronic structure (revised edition). World Scientific Publishing Company. doi: https://doi.org/10.1142/5432
  24. Wills, J. M., Harrison, W. A. (1984). Further studies on interionic interactions in simple metals and transition metals. Physical Review B, 29 (10), 5486–5490. doi: https://doi.org/10.1103/physrevb.29.5486
  25. Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: https://doi.org/10.1147/rd.13.0223
  26. Belayadi, A., Bourahla, B. (2018). A theoretical model to compute the localized electronic states at the surface of hexagonal structures with different coupling orbitals. Surface Science, 675, 1–14. doi: https://doi.org/10.1016/j.susc.2018.04.005
  27. Bourahla, B., Nafa, O. (2016). Magnons Heat Transfer and Magnons Scattering in Magnetic Sandwich Lattices: Application to Fe/Gd(5)/Fe System. SPIN, 6 (3), 1650007. doi: https://doi.org/10.1142/s2010324716500077
  28. Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 52 (7-8), 555–600. doi: https://doi.org/10.1007/bf01339455
  29. Feuchtwang, T. E. (1967). Dynamics of a Semi-Infinite Crystal Lattice in a Quasiharmonic Approximation. II. The Normal-Mode Analysis of a Semi-Infinite Lattice. Physical Review, 155 (3), 731–744. doi: https://doi.org/10.1103/physrev.155.731
  30. Szeftel, J., Khater, A. (1987). Calculation of surface phonons and resonances: the matching procedure revisited: I. Journal of Physics C: Solid State Physics, 20 (29), 4725–4736. doi: https://doi.org/10.1088/0022-3719/20/29/010
  31. Szczȩśniak, D., Khater, A., Ba̧k, Z., Szczȩśniak, R., Ghantous, M. A. (2012). Quantum conductance of silicon-doped carbon wire nanojunctions. Nanoscale Research Letters, 7 (1). doi: https://doi.org/10.1186/1556-276x-7-616
  32. Khater, A., Belhadi, M., Abou Ghantous, M. (2011). Phonons heat transport at an atomic well boundary in ultrathin solid films. The European Physical Journal B, 80 (3), 363–369. doi: https://doi.org/10.1140/epjb/e2011-10892-8
  33. Khater, A., Bourahla, B., Abou Ghantous, M., Tigrine, R., Chadli, R. (2011). Magnons coherent transmission and heat transport at ultrathin insulating ferromagnetic nanojunctions. The European Physical Journal B, 82 (1), 53–61. doi: https://doi.org/10.1140/epjb/e2011-10935-2
  34. Grimech, H., Khater, A. (1995). Calculation of the spectral densities of the surface alloy system (PtcCu1 – c1/Cu(100). Surface Science, 323 (3), 198–206. doi: https://doi.org/10.1016/0039-6028(94)00630-x
  35. Economou, E. N. (2006). Green's functions in quantum physics. Vol. 7. Springer Science & Business Media. doi: https://doi.org/10.1007/3-540-28841-4
  36. Pastawski, H. M., Medina, E. (2001). Tight Binding'methods in quantum transport through molecules and small devices: From the coherent to the decoherent description. doi: https://doi.org/10.48550/arXiv.cond-mat/0103219
Consideration of electronic mean heat transport via a low dimension system

Downloads

Published

2024-04-11

How to Cite

Aicha, Z., Sakher, E., Rachid, T., Abdallah, B., & Benselhoub, A. (2024). Consideration of electronic mean heat transport via a low dimension system. Technology Audit and Production Reserves, 2(1(76), 31–41. https://doi.org/10.15587/2706-5448.2024.300260