Influence of hydrodynamic cavitation on biological objects

Authors

  • Мирослав Степанович Мальований Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-2534-514X
  • Володимир Валентинович Никифоров Kremenchug Mykhailo Ostrohradskyi National University, 20 Pershotravneva Street, Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0001-6790-0722
  • Олександр Дмитрович Синельніков Higher Vocational School of Lviv State University of Life Safety, 7, Arabej general str., 21020, Vinnitsа, Ukraine https://orcid.org/0000-0003-1610-1650
  • Олена Володимирівна Харламова Kremenchug Mykhailo Ostrohradskyi National University, 20 Pershotravneva Street, Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0002-1010-0772
  • Василь Ярославович Бунько Branch of National University of Life and Environmental Sciences of Ukraine «Berezhansk Agrotechnical Institute», Berezhany, str. Academichna, 20, 47501, Ukraine https://orcid.org/0000-0002-9403-8135

DOI:

https://doi.org/10.15587/2312-8372.2015.50862

Keywords:

hydrodynamic cavitation, cyanobacterial biomass, biogas, lipids, biological objects, inactivation of microorganisms

Abstract

Cavitation, which yet has not found a wide application in industrial technologies, is an effective method of hydro-mechanical intensification of chemical-engineering, food, pharmaceutical, biological and other processes. The effectiveness of cavitation process is enabled by cavitation crashing of the solid phase, turbulent diffusion of boundary layer of the fluid by cavitation bubbles, emergence mass transfer aspects, which are characterized by high values of mass transfer coefficients. Processing of biological objects in a cavitation field can be used as an independent process and ensure an inactivation and extinction of microorganisms or as cyanobacteria pre-treatment stage with the aim of increasing the mass transfer surface for the following extraction or biochemical processes. The results of microscopic analysis showed that for certain modes of processing of liquid substances in the cavitation field the decrease of contrast cells is observed as well as damage to the cell membrane, reducing the clarity of contours, cell shape change, aggregation and mechanical damage. Experimental studies have established that in the case of hydrodynamic cavitation to increase the effectiveness of the process of obtaining energy from cyanobacterial biomass, treated in a hydrodynamic cavitation field cyanobacterial biomass, a degree of lipid extraction is increased by 54,3 % and the number of synthesized biogas increases by 28,3 %.

Author Biographies

Мирослав Степанович Мальований, Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of the Department

Department of Ecology and Sustainable Environmental Management

Володимир Валентинович Никифоров, Kremenchug Mykhailo Ostrohradskyi National University, 20 Pershotravneva Street, Kremenchuk, Ukraine, 39600

Doctor of Biological Sciences, Professor, First vice-rector

Олександр Дмитрович Синельніков, Higher Vocational School of Lviv State University of Life Safety, 7, Arabej general str., 21020, Vinnitsа

Senior Lecturer of Cycle

Cycle of service organization and protection

Олена Володимирівна Харламова, Kremenchug Mykhailo Ostrohradskyi National University, 20 Pershotravneva Street, Kremenchuk, Ukraine, 39600

Candidate of Technical Sciences, Associate Professor

Department of Ecological Safety and Natural Management

Василь Ярославович Бунько, Branch of National University of Life and Environmental Sciences of Ukraine «Berezhansk Agrotechnical Institute», Berezhany, str. Academichna, 20, 47501

Candidate of Technical Sciences, Associate Professor

Department of Energy and Automation 

References

  1. Vitenko, T. M. (2009). Hidrodynamichna kavitatsiia u masoobminnykh khimichnykh i biolohichnykh protsesakh. Ternopil: Publishing Ternopil State Technical University named after Ivan Pul'u, 224.
  2. Mokryi, E. N., Starchevsky, V. L. (1987). Ul'trazvuk v protsessah okisleniia organicheskih soedinenii. L'vov: Vishcha shkola, 120.
  3. Pandit, A. B., Joshi, J. B. (1993, October). Hydrolysis of fatty oils: effect of cavitation. Chemical Engineering Science, 48 (19), 3440–3442. doi:10.1016/0009-2509(93)80164-l
  4. Shevchuk, L. I., Aftanaziv, I. S., Strohan, O. I., Starchevsky, V. L. (2013). Nyzkochastotni vibrorezonansni kavitatory. Lviv: Vydavnytstvo Lvivskoi politekhniky, 176.
  5. Shevchuk, L. I., Aftanaziv, I. S., Strohan, O. I. (2011). Vibratsiinyi elektromahnitnyi kavitator rezonansnoi dii. Ukrainskyi mizhvidomchyi naukovo-tekhnichnyi zbirnyk "Avtomatyzatsiia vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni", 45, 374–379.
  6. Bergman, L. (1957). Ul'trazvuk i ego primenenie v nauke i tehnike. M.: IL, 728.
  7. Vitenko, T. M., Volikova, N. M. (2002). Hidrodynamichna kavitatsiia v protsesakh dezynfektsii vody. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Mashynobuduvannia, 42 (1), 77–80.
  8. Kul'skii, L. A., Savluk, O. S., Kaiumova, G. H. (1978). Intensifikatsiia protsessov obezzarazhivaniia vody. Kiev: Naukova dumka, 197.
  9. Nikiforov, V. V., Degtiar', S. V., Shmandii, E. V. (2008). Obespechenie ekologicheskoi bezopasnosti Dneprovskogo basseina putiom ispol'zovaniia gidrobiontov dlia polucheniia biogaza. Mashinostroenie i bezopasnost' zhiznedeiatel'nosti, 5, 51–56.
  10. Nikiforov, V. V., Alfiorov, V. P., Shmandii, V. M. et al. (2010). Ispol'zovanie sine-zelionyh vodoroslei dlia polucheniia biogaza. Gigiena i sanitariia, 6, 35–37.
  11. Priimachenko, A. D. (1981). Fitoplankton i pervichnaia produktsiia Dnepra i dneprovskih vodohranilishch. Kiev: Naukova dumka, 278.
  12. Malovanyy, M. S., Sinelnіkov, O. D., Kharlamova, O. V., Malovanyy, A. M. (2014). Optymalni umovy otrymannia enerhii iz tsianobakterii. Khimichna promyslovist Ukrainy, 5, 39–43.
  13. Barbash, V. A., Pymakov, S. P., Tembus, I. V., Klik, M. O. (2010). Modyfikovanyi ASAE-sposib delihnifikatsii pshenychnoi solomy. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy «Kyivskyi politekhnichnyi instytut». Khimichna inzheneriia, ekolohiia ta resursozberezhennia, 2 (6), 97–101.
  14. Skliar, O. H., Skliar, R. V. (2014). Metody intensyfikatsii protsesiv metanovoho zbrodzhuvannia. Naukovyi visnyk Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu, 4 (1), 3–9.
  15. Nesterov, A. I., Suslenkov, B. D., Starovoitova, G. A. (1973). Optimizatsiia pitatel'nogo mineral'nogo rastvora dlia metanpotrebliaiushchih bakterii. Prikladnaia biohimiia i mikrobiologiia, 9, 873–876.

Published

2015-09-22

How to Cite

Мальований, М. С., Никифоров, В. В., Синельніков, О. Д., Харламова, О. В., & Бунько, В. Я. (2015). Influence of hydrodynamic cavitation on biological objects. Technology Audit and Production Reserves, 5(4(25), 41–45. https://doi.org/10.15587/2312-8372.2015.50862

Issue

Section

Technologies of food, light and chemical industry