Development of simplified mathematical model of carbon products formation

Authors

  • Олексій Анатолійович Жученко National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056, Ukraine https://orcid.org/0000-0001-5611-6529
  • Микола Григорович Хібеба National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056, Ukraine https://orcid.org/0000-0003-0703-4820

DOI:

https://doi.org/10.15587/2312-8372.2016.81218

Keywords:

carbon products, formation, mathematical model, temperature conditions

Abstract

Production of carbon products is characterized by considerable resource and energy consumption, so it is important to improve the efficiency of this production through the introduction of optimal modes of its component processes. A simplified mathematical model of carbon products formation is developed and studied. It is differed from the known models by the almost zero time to calculate it. Developed simplified mathematical model provides an opportunity to increase the research effectiveness of temperature conditions of carbon products formation by reducing the time for research and determine the temperature at any point in the process. Accuracy research of simplified models was conducted by comparing the temperature values calculated according to these models with temperatures calculated according to the original complex model, which in this case is considered as experimental data. As a result, a simplified mathematical model can be used for the synthesis of process control system, as well as in the real time control system.

Author Biographies

Олексій Анатолійович Жученко, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056

Candidate of Technical Sciences, Associate Professor

Department of Chemical Automation Manufactures 

Микола Григорович Хібеба, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056

PhD student

Department of Chemical Automation Manufactures 

References

  1. Chalyh, E. F. (1972). Tehnologiia i oborudovanie elektrodnyh i elektrougol'nyh predpriiatii. Moscow: Metallurgiia, 432.
  2. Sannikov, A. K., Somov, A. B., Kliuchnikov, V. V. et al. (1985). Proizvodstvo elektrodnoi produktsii. Moscow: Metallurgiia, 129.
  3. Aris, R. (1994). Mathematical Modelling Techniques. New York: Dover, 286. ISBN 0-486-68131-9.
  4. Bender, E. A. (2000). An Introduction to Mathematical Modeling. New York: Dover, 272. ISBN 0-486-41180-X.
  5. Lazarev, T. V., Leleka, S. V. (2011). Otsenka koeffitsienta termicheskogo rasshireniia pri nagreve obraztsov uglerodistogo materiala neobozhzhennyh grafitovyh elektrodov. Visnyk NTUU «KPI». Khimichna inzheneriia, ekolohiia ta resursozberezhennia, 1 (7), Addition, 55–57.
  6. Zhou, Y. C., Wright, B. D., Yang, R. Y., Xu, B. H., Yu, A. B. (1999, July). Rolling friction in the dynamic simulation of sandpile formation. Physica A: Statistical Mechanics and its Applications, Vol. 269, № 2-4, 536–553. doi:10.1016/s0378-4371(99)00183-1
  7. Panov, E. N., Karvatskii, A. Y., Shilovich, T. B., Lazarev, T. B., Moroz, A. S. (2014, September). Mathematical Model of Solid-Fuel Gasification in a Fluidized Bed. Chemical and Petroleum Engineering, Vol. 50, № 5-6, 312–322. doi:10.1007/s10556-014-9900-3
  8. Mitsoulis, E. (2007). Flows of Viscoplastic Materials: Models and Computations. Rheology Reviews, 135–178.
  9. Karvatskii, A. Ya., Panov, E. N., Kutuzov, S. V. et al. (2012). Teoreticheskie i eksperimental'nye issledovaniia teploelektricheskogo i mehanicheskogo sostoianiia vysokotemperaturnyh agregatov. Kyiv: NTUU «KPІ», 356.
  10. Zhuchenko, O. A., Tsapar, V. S. (2015, May 20). Metod sproshchennia matematychnykh modelei obiektiv keruvannia iz rozpodilenymy parametramy. Automation of technological and business processes, Vol. 7, № 1, 15–25. doi:10.15673/2312-3125.21/2015.42858
  11. Sheviakov, A. A., Yakovleva, R. V. (1986). Upravlenie teplovymi ob#ektami s raspredelennymi parametrami. Moscow: Energoatomizdat, 208.
  12. Deviatov, B. N., Demidenko, N. D. (1983). Teoriia i metody analiza upravliaemyh raspredelennyh protsessov. Novosibirsk: Nauka, 271.
  13. Butkovskii, A. G. (1965). Teoriia optimal'nogo upravleniia sistemy s raspredelennymi parametrami. Moscow: Nauka, 474.
  14. Vasileva, A. B., Butuzov, V. F. (1990). Asimptoticheskie metody v teorii singuliarnyh vozmushchenii. Moscow: Vysshaia shkola, 208.
  15. Makovskii, V. A. (1971). Dinamika metallurgicheskih ob#ektov s raspredelennymi parametrami. Moscow: Metallurgiia, 384.
  16. Rei, U. (1983). Metody upravleniia tehnologicheskimi protsessami. Moscow: Mir, 368.
  17. Chermak, I., Paperka, V., Zavorka, I. (1972). Dinamika reguliruemyh sistem v teploenergetike i himii. Moscow: Mir, 623.
  18. Sheviakov, A. A., Yakovleva, R. V. (1968). Inzhenernye metody rascheta dinamiki teploobmennyh apparatov. Moscow: Mashinostroenie, 314.
  19. Rapoport, E. Ya. (2003). Strukturnoe modelirovanie obiektov i sistem upravleniia s raspredelennymi parametrami. Moscow: Vysshaia shkola, 239.
  20. Koshlakov, N. S., Gliner, E. B., Smirnov, M. M. (1970). Uravneniia v chastnyh proizvodnyh matematicheskoi fiziki. Moscow: Nauka, 712.
  21. Tihonov, A. N., Samarskii, A. A. (1966). Uravneniia matematicheskoi fiziki. Moscow: Nauka, 735.
  22. Gilat, A. (2008). MATLAB: An Introduction with Applications. Ed. 3. JohnWiley & Sons, 384. ISBN 978-0-470-10877-2.
  23. Bidiuk, P. I., Meniailenko, O. S., Polovtsev, O. V. (2008). Metody prohnozuvannia. Luhansk: Alma-mater, 308.
  24. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (2013). Time Series Analysis. Ed. 4. JohnWiley & Sons, 756. doi:10.1002/9781118619193
  25. Eykhoff, P. (1975). Osnovy identifikatsii sistem upravleniia: otsenivanie parametrov i sostoianiia. Moscow: Mir, 683.

Published

2016-09-29

How to Cite

Жученко, О. А., & Хібеба, М. Г. (2016). Development of simplified mathematical model of carbon products formation. Technology Audit and Production Reserves, 5(3(31), 16–22. https://doi.org/10.15587/2312-8372.2016.81218

Issue

Section

Technologies of food, light and chemical industry