Development of simplified mathematical model of carbon products formation
DOI:
https://doi.org/10.15587/2312-8372.2016.81218Keywords:
carbon products, formation, mathematical model, temperature conditionsAbstract
Production of carbon products is characterized by considerable resource and energy consumption, so it is important to improve the efficiency of this production through the introduction of optimal modes of its component processes. A simplified mathematical model of carbon products formation is developed and studied. It is differed from the known models by the almost zero time to calculate it. Developed simplified mathematical model provides an opportunity to increase the research effectiveness of temperature conditions of carbon products formation by reducing the time for research and determine the temperature at any point in the process. Accuracy research of simplified models was conducted by comparing the temperature values calculated according to these models with temperatures calculated according to the original complex model, which in this case is considered as experimental data. As a result, a simplified mathematical model can be used for the synthesis of process control system, as well as in the real time control system.
References
- Chalyh, E. F. (1972). Tehnologiia i oborudovanie elektrodnyh i elektrougol'nyh predpriiatii. Moscow: Metallurgiia, 432.
- Sannikov, A. K., Somov, A. B., Kliuchnikov, V. V. et al. (1985). Proizvodstvo elektrodnoi produktsii. Moscow: Metallurgiia, 129.
- Aris, R. (1994). Mathematical Modelling Techniques. New York: Dover, 286. ISBN 0-486-68131-9.
- Bender, E. A. (2000). An Introduction to Mathematical Modeling. New York: Dover, 272. ISBN 0-486-41180-X.
- Lazarev, T. V., Leleka, S. V. (2011). Otsenka koeffitsienta termicheskogo rasshireniia pri nagreve obraztsov uglerodistogo materiala neobozhzhennyh grafitovyh elektrodov. Visnyk NTUU «KPI». Khimichna inzheneriia, ekolohiia ta resursozberezhennia, 1 (7), Addition, 55–57.
- Zhou, Y. C., Wright, B. D., Yang, R. Y., Xu, B. H., Yu, A. B. (1999, July). Rolling friction in the dynamic simulation of sandpile formation. Physica A: Statistical Mechanics and its Applications, Vol. 269, № 2-4, 536–553. doi:10.1016/s0378-4371(99)00183-1
- Panov, E. N., Karvatskii, A. Y., Shilovich, T. B., Lazarev, T. B., Moroz, A. S. (2014, September). Mathematical Model of Solid-Fuel Gasification in a Fluidized Bed. Chemical and Petroleum Engineering, Vol. 50, № 5-6, 312–322. doi:10.1007/s10556-014-9900-3
- Mitsoulis, E. (2007). Flows of Viscoplastic Materials: Models and Computations. Rheology Reviews, 135–178.
- Karvatskii, A. Ya., Panov, E. N., Kutuzov, S. V. et al. (2012). Teoreticheskie i eksperimental'nye issledovaniia teploelektricheskogo i mehanicheskogo sostoianiia vysokotemperaturnyh agregatov. Kyiv: NTUU «KPІ», 356.
- Zhuchenko, O. A., Tsapar, V. S. (2015, May 20). Metod sproshchennia matematychnykh modelei obiektiv keruvannia iz rozpodilenymy parametramy. Automation of technological and business processes, Vol. 7, № 1, 15–25. doi:10.15673/2312-3125.21/2015.42858
- Sheviakov, A. A., Yakovleva, R. V. (1986). Upravlenie teplovymi ob#ektami s raspredelennymi parametrami. Moscow: Energoatomizdat, 208.
- Deviatov, B. N., Demidenko, N. D. (1983). Teoriia i metody analiza upravliaemyh raspredelennyh protsessov. Novosibirsk: Nauka, 271.
- Butkovskii, A. G. (1965). Teoriia optimal'nogo upravleniia sistemy s raspredelennymi parametrami. Moscow: Nauka, 474.
- Vasileva, A. B., Butuzov, V. F. (1990). Asimptoticheskie metody v teorii singuliarnyh vozmushchenii. Moscow: Vysshaia shkola, 208.
- Makovskii, V. A. (1971). Dinamika metallurgicheskih ob#ektov s raspredelennymi parametrami. Moscow: Metallurgiia, 384.
- Rei, U. (1983). Metody upravleniia tehnologicheskimi protsessami. Moscow: Mir, 368.
- Chermak, I., Paperka, V., Zavorka, I. (1972). Dinamika reguliruemyh sistem v teploenergetike i himii. Moscow: Mir, 623.
- Sheviakov, A. A., Yakovleva, R. V. (1968). Inzhenernye metody rascheta dinamiki teploobmennyh apparatov. Moscow: Mashinostroenie, 314.
- Rapoport, E. Ya. (2003). Strukturnoe modelirovanie obiektov i sistem upravleniia s raspredelennymi parametrami. Moscow: Vysshaia shkola, 239.
- Koshlakov, N. S., Gliner, E. B., Smirnov, M. M. (1970). Uravneniia v chastnyh proizvodnyh matematicheskoi fiziki. Moscow: Nauka, 712.
- Tihonov, A. N., Samarskii, A. A. (1966). Uravneniia matematicheskoi fiziki. Moscow: Nauka, 735.
- Gilat, A. (2008). MATLAB: An Introduction with Applications. Ed. 3. JohnWiley & Sons, 384. ISBN 978-0-470-10877-2.
- Bidiuk, P. I., Meniailenko, O. S., Polovtsev, O. V. (2008). Metody prohnozuvannia. Luhansk: Alma-mater, 308.
- Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (2013). Time Series Analysis. Ed. 4. JohnWiley & Sons, 756. doi:10.1002/9781118619193
- Eykhoff, P. (1975). Osnovy identifikatsii sistem upravleniia: otsenivanie parametrov i sostoianiia. Moscow: Mir, 683.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Олексій Анатолійович Жученко, Микола Григорович Хібеба
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.