Practical use of dry magnetically controlled biosorbent in purification system of domestic sewage

Authors

  • Світлана Василівна Горобець National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5328-2959
  • Оксана Юріївна Горобець National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-2911-6870
  • Олексій Вікторович Ковальов National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5069-8959
  • Юлія Вікторівна Шатохіна National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-3000-1285
  • Світлана Олексіївна Ковальова Chernihiv Collegium № 11, Miry ave.137, Chernihiv, Ukraine, 14000, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2016.87129

Keywords:

dry magnetically controlled biosorbent, biosorption, magnetite nanoparticles, wastewater, magnetohydrodynamic mixing

Abstract

The object of research is domestic sewage of sewage treatment facilities in Slavutich (Ukraine) and sorption capacity of the new dry magnetically controlled biosorbent (MCB) in relation to conventional pollutants of domestic sewage. The research found that the existing problem in wastewater treatment – exceeding MPD standards for indicators such as COD, ammonia nitrogen, nitrite, total iron, phosphates, smell – can be solved by using dry modified biosorbent obtained by magnetohydrodynamic mixing (MHDM) in crossed electric and magnetic fields. It was also selected optimal dose of dry MCB, which is 4 g/dm3 and optimal biosorption time – 20 minutes. The optimum particle size of dry MCB for effective biosorption is 0,1 mm. Efficiency of removal was determined not only for heavy metal ions by dry MCB on the basis of Sacharomyces CEREVISIAE yeast, obtained by MHDM in crossed electric and magnetic fields, but also for effective removal of such indicators of domestic sewage as: smell, COD, ammonia nitrogen, nitrite, phosphate, total iron.

As a result of researches it was found that dry MCB completely neutralizes the smell of sewage from the V points to 0 points. The effect of COD treatment is 48,1 %; ammonia nitrogen – 46,7 %; nitrite – 91,7 %; phosphates – 64,4 %; total iron – 51,7 %.

Efficiency of dry MCB is in reduction of concentration of pollutants to MPD level. The advantage of dry MCB, obtained by MHDM in crossed electric and magnetic fields, is in storage and transportation. Research is useful because dry MCB, obtained by MHDM in crossed electric and magnetic fields, can be removed in speed mode using magnetic separation.

The results of this research can be used for dose selection of dry biosorbent for wastewater sewage of sewage treatment facilities, where there is a problem with the purification of the above parameters. This will allow treatment facilities to purify sewage water to MPD standards and reduce the negative impact on the reservoir.

Author Biographies

Світлана Василівна Горобець, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of the Department

Department of bioinformatics

Оксана Юріївна Горобець, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056

Doctor of Physical and Mathematical Sciences, Professor

Department of bioinformatics

Олексій Вікторович Ковальов, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056

Postgraduate Student

Department of bioinformatics

Юлія Вікторівна Шатохіна, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremoga ave. 37, Кyiv, Ukraine, 03056

Candidate of Technical Sciences, Lecturer

Department of Public and Organizations Management

References

  1. Kovalov, O. V., Ivanova, I. M. (2010). Laboratorni doslidzhennia ozonuvannia stichnykh vod. Zbirnyk naukovykh prats za materialamy VI mizhnarodnoi naukovo-praktychnoi konferentsii. Chernihiv: ChDEIU, 158–161.
  2. Wang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27 (2), 195–226. doi:10.1016/j.biotechadv.2008.11.002
  3. Horobets, S. V., Nhuien, T. Z., Karpenko, Yu. V. (2012). Doslidzhennia sorbtsii ioniv zaliza mahnitomichenym biosorbentom. VI Vseukrainska naukovo-praktychna konferentsiia «Biotekhnolohiia XXI stolittia», 5 kvitnia 2012. Kyiv: NTUU «KPI», 147.
  4. Patzak, M., Dostalek, P., Fogarty, R. V., Safarik, I., Tobin, J. M. (1997). Development of magnetic biosorbents for metal uptake. Biotechnology Techniques, 11 (7), 483–487. doi:10.1023/a:1018453814472
  5. Horobets, S. V., Horobets, O. Yu., Dvoinenko, O. K. et al. (2010). Ochyshchennia stichnykh vod vid ioniv Cu2+ (II) mahnitokerovanym biosorbentom za dopomohoiu vysokohradiientnykh feromahnitnykh nasadok. Naukovi visti NTUU «KPI», 3, 21–25.
  6. Horobets, S. V., Karpenko, Yu. V., Marynchenko, L. V. (2010). Biosorbtsiia ioniv midi Cu2+ mahnitomichenymy klitynamy S.serevisiae. Visnyk Donetskoho natsionalnoho universytetu. Ser. A. Pryrodnychi nauky, 1, 230–236.
  7. Yang, S. H., Lee, T., Seo, E., Ko, E. H., Choi, I. S., Kim, B.-S. (2011). Interfacing Living Yeast Cells with Graphene Oxide Nanosheaths. Macromolecular Bioscience, 12 (1), 61–66. doi:10.1002/mabi.201100268
  8. Peng, Q., Liu, Y., Zeng, G., Xu, W., Yang, C., Zhang, J. (2010). Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 177 (1-3), 676–682. doi:10.1016/j.jhazmat.2009.12.084
  9. Horobets, S. V., Karpenko, Yu. V., Kovalov, O. V., Olishevskyi, V. V. (2013). Zastosuvannia mahnitomichenykh klityn S.cerevisiae yak biosorbentu na ochysnykh sporudakh. Naukovi visti NTUU «KPI», 3, 42–47.
  10. Safarik, I., Maderova, Z., Pospiskova, K., Horska, K., Safarikova, M. (2014). CHAPTER 10. Magnetic Decoration and Labeling of Prokaryotic and Eukaryotic Cells. RSC Smart Materials. London: Royal Society of Chemistry (RSC), 185–215. doi:10.1039/9781782628477-00185
  11. Safarik, I., Maderova, Z., Pospiskova, K., Baldikova, E., Horska, K., Safarikova, M. (2015). Magnetically responsive yeast cells: Methods of preparation and applications. Yeast, 32 (1), 227–237. doi:10.1002/yea.3043
  12. Wu, H. Q., Wu, Q. P. (2013). Research Progress of Nanomaterials about Removal of Toxic Metal Ions and Organics Used in Water Treatment. Advanced Materials Research, 662, 207–213. doi:10.4028/www.scientific.net/amr.662.207
  13. Safarik, I., Pospiskova, K., Baldikova, E., Safarikova, M. (2016). Magnetically Responsive Biological Materials And Their Applications. Advanced Materials Letters, 7 (4), 254–261. doi:10.5185/amlett.2016.6176
  14. Jadidian, R., Parham, H., Haghtalab, S., Asrarian, R. (2013). Removal of Copper from Industrial Water and Wastewater Using Magnetic Iron Oxide Nanoparticles Modified with Benzotriazole. Advanced Materials Research, 829, 742–746. doi:10.4028/www.scientific.net/amr.829.742
  15. Infante J, C. (2014). Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Revista MVZ Córdoba, 19 (2), 4141–4149. Available: http://revistas.unicordoba.edu.co/revistas/index.php/revistamvz/article/view/107
  16. Nguyen, M. L., Juang, R.-S. (2015). Improved biosorption of phenol using crosslinked chitosan beads after modification with histidine and Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 20 (3), 614–621. doi:10.1007/s12257-015-0039-7
  17. Gorobets, S. V., Chyzh, Yu. M., Kovalyov, O. V., Shpetnyi, I. O. (2015). Efficiency of Magnetically Labelled Biosorbent Based on Saccharomyces cerevisiae Yeast for Sewage Treatment. Naukovi visti NTUU «КPІ», 3, 14–22
  18. Horobets, S. V., Horobets, O. Yu., Chyzh, Yu. M., Kovalov, O. V.; assignee: National Technical University of Ukraine «Kyiv Polytechnic Institute». (25.08.2015). Sposib otrymannia mahnitokerovanoho biosorbentu. Patent of Ukraine 101016. Appl. № u 2015 00909. Filed 05.02.2015. Bull. № 16. Available: http://uapatents.com/5-101016-sposib-otrimannya-magnitokerovanogo-biosorbentu.html
  19. KND 211.1.4.034-95. Metodyka fotometrychnoho vyznachennia zahalnoho zaliza z ortofenantrolinom v poverkhnevykh i stichnykh vodakh. (1995). Kyiv: Ministry of Environmental Protection of Ukraine, 10.
  20. KND 211.1.4.030-95. Metodyka fotometrychnoho vyznachennia amonii-ioniv z reaktyvom Neslera v stichnykh vodakh. (1995). Kyiv: Ministry of Environmental Protection of Ukraine, 10.
  21. KND 211.1.4.023-95. Metodyka fotometrychnoho vyznachennia nitryt-ioniv z reaktyvom Hrissa v poverkhnevykh ta ochyshchenykh stichnykh vodakh. (1995). Kyiv: Ministry of Environmental Protection of Ukraine, 10.
  22. KND 211.1.4.021-95. Metodyka vyznachennia khimichnoho spozhyvannia kysniu (KhSK) v poverkhnevykh i stichnykh vodakh. (1995). Kyiv: Ministry of Environmental Protection of Ukraine, 10.
  23. MVV 081/12-0005-01. Poverkhnevi ta ochyshcheni stichni vody. Metodyka vykonannia vymiriuvan masovoi kontsentratsii rozchynenykh ortofosfativ fotometrychnym metodom (0,05-100 mh/dm3).
  24. Lurie, Yu. Yu. (1984). Analiticheskaia himiia promyshlennyh stochnyh vod. Moscow: Himiia, 448.
  25. Ivanova, Yu., Zenkin, A., Fedorchenko, Yu., Maziuk, N. (2012). Security assessment of major phases of the life cycle of wastewater regulation document. Eastern-European Journal Of Enterprise Technologies, 3(6(57)), 56–61. Available: http://journals.uran.ua/eejet/article/view/4044

Published

2016-11-24

How to Cite

Горобець, С. В., Горобець, О. Ю., Ковальов, О. В., Шатохіна, Ю. В., & Ковальова, С. О. (2016). Practical use of dry magnetically controlled biosorbent in purification system of domestic sewage. Technology Audit and Production Reserves, 6(3(32), 46–51. https://doi.org/10.15587/2312-8372.2016.87129

Issue

Section

Technologies of food, light and chemical industry