Investigation of approaches to modeling of intercity passenger transportation system
DOI:
https://doi.org/10.15587/2312-8372.2017.108889Keywords:
transport system, gravity model, passenger transport correspondence, intercity transportationAbstract
The modern scientific approaches to the issue of establishing passenger correspondence using public routes between regional centers are investigated. The results of the analysis of the existing methods for calculating the correspondence of passengers find the impossibility of their implementation without a preliminary study of the features of the system and formalization of corrective coefficients - the components of the gravity functions. It is established that at present in the world practice gravitational modeling is used for forecasting the indicators of interregional passenger transport correspondence.
An empirical method is used to establish the parameters of the quantitative index of the gravity function. Unlike previous researchers, used for the invention of the parameters of the function of the attraction approach allows to obtain new knowledge about the studied system. Without the use of automated or non-automated means for examining the correspondence of passengers, it is possible to obtain indicators of the parameters of the experimental system without the influence of the human factor and any time interval.
The obtained research results provide an opportunity to carry out calculations of the correspondence of passengers between the regional centers of Ukraine on the routes of general transport using the gravity model. Unknown parameters of gravity function are established in the conducted research. They provide an opportunity in forecasting the correspondence of passengers in the investigated system.
References
- Spichkova, M., Simic, M., Schmidt, H. (2015). Formal Model for Intelligent Route Planning. Procedia Computer Science, 60, 1299–1308. doi:10.1016/j.procs.2015.08.196
- Deri, A., Kalpakci, A. (2014). Efficient Usage of Transfer based System in Intracity Bus Transit Operation: Sample of Izmir. Procedia – Social and Behavioral Sciences, 111, 311–319. doi:10.1016/j.sbspro.2014.01.064
- Dib, O., Manier, M.-A., Moalic, L., Caminada, A. (2017). A multimodal transport network model and efficient algorithms for building advanced traveler information systems. Transportation Research Procedia, 22, 134–143. doi:10.1016/j.trpro.2017.03.020
- Vissat, L. L., Clark, A., Gilmore, S. (2015). Finding Optimal Timetables for Edinburgh Bus Routes. Electronic Notes in Theoretical Computer Science, 310, 179–199. doi:10.1016/j.entcs.2014.12.018
- Zhu, W., Xu, R. (2016). Generating route choice sets with operation information on metro networks. Journal of Traffic and Transportation Engineering (English Edition), 3 (3), 243–252. doi:10.1016/j.jtte.2016.05.001
- Arhin, S., Noel, E., Anderson, M. F., Williams, L., Ribisso, A., Stinson, R. (2016). Optimization of transit total bus stop time models. Journal of Traffic and Transportation Engineering (English Edition), 3 (2), 146–153. doi:10.1016/j.jtte.2015.07.001
- Kalaanidhi, S., Gunasekaran, K. (2013). Estimation of Bus Transport Ridership Accounting Accessibility. Procedia – Social and Behavioral Sciences, 104, 885–893. doi:10.1016/j.sbspro.2013.11.183
- Sun, Y., Sun, X., Li, B., Gao, D. (2013). Joint Optimization of a Rail Transit Route and Bus Routes in a Transit Corridor. Procedia – Social and Behavioral Sciences, 96, 1218–1226. doi:10.1016/j.sbspro.2013.08.139
- Menukhova, T., Vyushkova, A. (2017). Using of Regionalization Techniques to Select Optimal Routes Based on Criteria of Road Features. Transportation Research Procedia, 20, 436–442. doi:10.1016/j.trpro.2017.01.071
- Bakas, I., Drakoulis, R., Floudas, N., Lytrivis, P., Amditis, A. (2016). A Flexible Transportation Service for the Optimization of a Fixed-route Public Transport Network. Transportation Research Procedia, 14, 1689–1698. doi:10.1016/j.trpro.2016.05.134
- Youlong, L., Guihua, N. (2012). Route Optimization Algorithm and Solution for Web Service Engineering. Systems Engineering Procedia, 5, 427–436. doi:10.1016/j.sepro.2012.04.065
- Briem, L., Buck, H. S., Mallig, N., Vortisch, P., Strasser, B., Wagner, D., Zundorf, T. (2017). Integrating public transport into mobiTopp. Procedia Computer Science, 109, 855–860. doi:10.1016/j.procs.2017.05.401
- Aparicio, A. (2016). Exploring the Sustainability Challenges of Long-distance Passenger Trends in Europe. Transportation Research Procedia, 13, 90–99. doi:10.1016/j.trpro.2016.05.010
- Bohari, Z. A., Bachok, S., Osman, M. M. (2014). Improving the Quality of Public Transportation System: Application of Simulation Model for Passenger Movement. Procedia – Social and Behavioral Sciences, 153, 542–552. doi:10.1016/j.sbspro.2014.10.087
- Haar, S., Theissing, S. (2015). A Hybrid-Dynamical Model for Passenger-flow in Transportation Systems**This research work has been carried out under the leadership of the Technological Research Institute SystemX, and therefore granted with public funds within the scope of the French Program «Investissements d’Avenir». IFAC-PapersOnLine, 48 (27), 236–241. doi:10.1016/j.ifacol.2015.11.181
- Sun, D., Xu, Y., Peng, Z.-R. (2015). Timetable optimization for single bus line based on hybrid vehicle size model. Journal of Traffic and Transportation Engineering (English Edition), 2 (3), 179–186. doi:10.1016/j.jtte.2015.03.006
- Vrtic, M., Frohlich, P., Schussler, N., Axhausen, K. W., Lohse, D., Schiller, C., Teichert, H. (2007). Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model: Theory and application for a Swiss national model. Transportation Research Part A: Policy and Practice, 41 (9), 857–873. doi:10.1016/j.tra.2006.10.003
- Rwakarehe, E. E., Zhong, M., Christie, J. (2014). Development of a Freight Demand Model for the Province of Alberta Using Public Sources of Data. Procedia – Social and Behavioral Sciences, 138, 695–705. doi:10.1016/j.sbspro.2014.07.263
- Fornalchyk, Ye., Bilous, A., Demchuk, I. (2015). The Model of Correspondence of Passenger Transportation on the Basis of Fuzzy Logic. Econtechmod. An International Quarterly Journal, 4 (2), 59–64.
- Grosche, T., Rothlauf, F., Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13 (4), 175–183. doi:10.1016/j.jairtraman.2007.02.001
- Wu, C., Han, J., Hayashi, Y. (2011). Airport attractiveness analysis through a gravity model: A case study of Chubu International Airport in Japan. Proceedings of the 2011 World Conference of Air Transport Research Society, 1–14.
- Moreno, E. G., Romana, M. G., Martinez, O. (2016). A First Step to Diagnostic of Urban Transport Operations by Means of GPS Receiver. Procedia Computer Science, 83, 305–312. doi:10.1016/j.procs.2016.04.130
- Hu, Y., Zhang, Q., Wang, W. (2012). A Model Layout Region Optimization for Feeder Buses of Rail Transit. Procedia – Social and Behavioral Sciences, 43, 773–780. doi:10.1016/j.sbspro.2012.04.151
- Fonzone, A., Schmocker, J.-D., Liu, R. (2015). A Model of Bus Bunching under Reliability-based Passenger Arrival Patterns. Transportation Research Procedia, 7, 276–299. doi:10.1016/j.trpro.2015.06.015
- Raturi, V., Srinivasan, K., Narulkar, G., Chandrashekharaiah, A., Gupta, A. (2013). Analyzing Inter-modal Competition between High Speed Rail and Conventional Transport Systems: A Game Theoretic Approach. Procedia – Social and Behavioral Sciences, 104, 904–913. doi:10.1016/j.sbspro.2013.11.185
- Tuaycharoen, N., Sakcharoen, A., Cha-aim, W. (2016). Bangkok Bus Route Planning API. Procedia Computer Science, 86, 441–444. doi:10.1016/j.procs.2016.05.075
- Zhang, C., Teng, J. (2013). Bus Dwell Time Estimation and Prediction: A Study Case in Shanghai-China. Procedia – Social and Behavioral Sciences, 96, 1329–1340. doi:10.1016/j.sbspro.2013.08.15
- Qazi, A.-N., Nara, Y., Okubo, K., Kubota, H. (2017). Demand variations and evacuation route flexibility in short-notice bus-based evacuation planning. IATSS Research. Elsevier BV. doi:10.1016/j.iatssr.2017.01.002
- Zhang, X., Liu, P., Li, Z., Yu, H. (2013). Modeling the Effects of Low-carbon Emission Constraints on Mode and Route Choices in Transportation Networks. Procedia – Social and Behavioral Sciences, 96, 329–338. doi:10.1016/j.sbspro.2013.08.040
- Dave, S. M., Raykundaliya, D. P., Shah, S. N. (2013). Modeling Trip Attributes and Feasibility Study of co-ordinated Bus for School Trips of Children. Procedia – Social and Behavioral Sciences, 104, 650–659. doi:10.1016/j.sbspro.2013.11.159
- Richter, C., Keuchel, S. (2012). Modelling Mode Choice in Passenger Transport with Integrated Hierarchical Information Integration. Journal of Choice Modelling, 5 (1), 1–21. doi:10.1016/s1755-5345(13)70045-9
- Kabashkin, I. (2015). Modelling of Regional Transit Multimodal Transport Accessibility with Petri Net Simulation. Procedia Computer Science, 77, 151–157. doi:10.1016/j.procs.2015.12.373
- Essadeq, I., Dubail, E., Jeanniere, E. (2016). Modelling Passenger Congestion in Transit System – Benchmark and Three Case Studies. Transportation Research Procedia, 14, 1792–1801. doi:10.1016/j.trpro.2016.05.145
- Brands, T., de Romph, E., Veitch, T., Cook, J. (2014). Modelling Public Transport Route Choice, with Multiple Access and Egress Modes. Transportation Research Procedia, 1 (1), 12–23. doi:10.1016/j.trpro.2014.07.003
- Panasyuk, M. V., Pudovik, E. M., Sabirova, M. E. (2013). Optimization of Regional Passenger Bus Traffic Network. Procedia Economics and Finance, 5, 589–596. doi:10.1016/s2212-5671(13)00069-5
- Hadas, Y., Rossi, R., Gastaldi, M., Gecchele, G. (2014). Public Transport Systems’ Connectivity: Spatiotemporal Analysis and Failure Detection. Transportation Research Procedia, 3, 309–318. doi:10.1016/j.trpro.2014.10.011
- Baik, H., Trani, A., Hinze, N., Swingle, H., Ashiabor, S., Seshadri, A. (2008). Forecasting Model for Air Taxi, Commercial Airline, and Automobile Demand in the United States. Transportation Research Record: Journal of the Transportation Research Board, 2052, 9–20. doi:10.3141/2052-02
- Terekhov, I., Gollnick, V. (2015). A concept of forecasting origin-destination air passenger demand between global city pairs using future socio-economic scenarios. 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1640. doi:10.2514/6.2015-1640
- Dolya, C. (2017). Modeling of passenger transport correspondence between regional centers in Ukraine. Technology Audit and Production Reserves, 1(2(33)), 44–48. doi:10.15587/2312-8372.2017.93458
- Dolya, C. (2017). Modeling of intercity passenger transportation system. Technology Audit and Production Reserves, 2(2(34)), 37–43. doi:10.15587/2312-8372.2017.100465
- Xiao-qiang, L., Lei, W. (2015). The Passenger Demand Prediction for Airport Line of Rail Traffic. Metallurgical and Mining Industry, 9, 651–657.
- Mao, L., Wu, X., Huang, Z., Tatem, A. J. (2015). Modeling monthly flows of global air travel passengers: An open-access data resource. Journal of Transport Geography, 48, 52–60. doi:10.1016/j.jtrangeo.2015.08.017
- Park, M., Hahn, J. (2015). Regional Freight Demand Estimation Using Korean Commodity Flow Survey Data. Transportation Research Procedia, 11, 504–514. doi:10.1016/j.trpro.2015.12.042
- Schwieterman, J. (02.10.2016). Intercity Buses: 2015 Was A Smooth Ride. New Geography. Available: http://www.newgeography.com/content/005157-intercity-buses-2015-was-a-smooth-ride
- Li, T. (2017). A Demand Estimator Based on a Nested Logit Model. Transportation Science, 51 (3), 918–930. doi:10.1287/trsc.2016.0671
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Constantine Dolya, Anastasiia Botsman, Viktoriia Kozhyna
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.