Research of methods of obtaining continuous fibres of whiskers

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.126564

Keywords:

methods of obtaining whiskers, continuous fibers, organometallic solution

Abstract

The object of this research is some methods of obtaining continuous fibers of whiskers. The method of obtaining such fibers by extrusion of an organometallic colloidal solution is studied using the example of a scheme for carrying out such process. The process of obtaining fibers by the method of pyrolysis of polymeric fibers is studied using the example of another conceptual scheme. The problematic aspects of carrying out both processes and the use of such methods include the difficulty in obtaining the desired configuration and orientation of the fibers of threadlike crystals, as well as the inadequate perfection of the apparatus and installations for obtaining such fibers. When writing the work, various methods of scientific research were used, such as the method of statistical analysis, the method of analyzing the research results, the hypothetico-deductive method and the method of generalizing the results. The conducted studies show that the conditions for carrying out both processes must be strictly controlled, especially the temperature rise. It is shown that the methods used have an increased degree of danger. It is substantiated that, in spite of observance of all parameters of the conducted processes, the fact that the final fibers of the crystals will not have the necessary orientation and configuration may not be ruled out. As a result of the studies it is shown that the production of continuous fibers of whiskers by extrusion of an organometallic colloid solution is quite effective from the point of view of obtaining the final product of the desired orientation and the necessary parameters. The effectiveness of this method can be improved if the processes of doping the fibers from the gas phase are successfully used. It is shown that when carrying out studies of obtaining similar fibers by pyrolysis, it is possible to have high efficiency of the completed process, with full observance of the parameters of its conduct and sufficient perfection of the equipment. A fairly significant issue when using this particular method is the most effective conduct of the tension process of continuous fibers of whiskers during the heat treatment.

Author Biographies

Sergey Artemev, National University of Civil Defense of Ukraine, 94, Chernyshevsky str., Kharkiv, Ukraine, 61000

PhD, Associate Professor, Head of the Department

Department of Occupational Safety and Technogenic and Ecological Security

Valery Shaporev, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of the Department

Department of Chemical Technique and Industrial Ecology

Bohdan Tsymbal, National University of Civil Defense of Ukraine, 94, Chernyshevsky str., Kharkiv, Ukraine, 61000

PhD, Senior Lecturer

Department of Occupational Safety and Technogenic and Ecological Security

References

  1. Gusev, A. I. (1998). Nanokristallicheskie materialy. Metody polucheniya i svoystva. Moscow: FIZMATLIT, 248.
  2. Spedding, F. H., Beaudry, B. J., Groat, J. J., Palmer, P. E. (1970). Les Elements Des Terres Rares. Vol. 1. Editions du Centre Nat. de la Recherche Scientifique, 25.
  3. Chalmers, B. (1964). Principles of Solidification. New York: Wiley, 319.
  4. Liquid Metals and Solidification. (1958). Cleveland: American Society for Metals, 348.
  5. Gow, K. V., Chalmers, B. (1951). The preparation of high melting point metal single crystals and bicrystals with pre-determined crystallographic orientation. British Journal of Applied Physics, 2 (10), 300–303. doi:10.1088/0508-3443/2/10/305
  6. Hurle, D. T. J. (1966). Temperature oscillations in molten metals and their relationship to growth striae in melt-grown crystals. Philosophical Magazine, 13 (122), 305–310. doi:10.1080/14786436608212608
  7. Utech, H. P., Flemings, M. C. (1966). Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field. Journal of Applied Physics, 37 (5), 2021–2024. doi:10.1063/1.1708664
  8. Nacken, R., Neues, J. B. (1915). Uber das Wachstum von Kristallpolyedern in ihrem Schmelzfluß. Mineralog. Geol. Palaontol. Ref. Teil., 2, 133–164.
  9. Kyropoulos, S. (1926). Ein Verfahren zur Herstellung großer Kristalle. Zeitschrift Für Anorganische Und Allgemeine Chemie, 154 (1), 308–313. doi:10.1002/zaac.19261540129
  10. Czochralski, J. (1918). Ein neues Verfahren zur Messung des Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für Physikalische Chemie, 92, 219.
  11. Sworn, C. H., Brown, T. E. (1972). The growth of dislocation-free copper crystals. Journal of Crystal Growth, 15 (3), 195–203. doi:10.1016/0022-0248(72)90119-4
  12. Howe, S., Elbaum, C. (1961). The occurrence of dislocations in crystals grown from themelt. Philosophical Magazine, 6 (70), 1227–1240. doi:10.1080/14786436108243373
  13. Hukin, D. A. (1990). The Levitational Zone Refining (LZR) of photovoltaic silicon. Journal of Crystal Growth, 104 (1), 93–97. doi:10.1016/0022-0248(90)90314-b
  14. Carlson, O. N., Schmidt, F. A., Peterson, D. T. (1966). Electrotransport of interstitial atoms in yttrium. Journal of the Less Common Metals, 10 (1), 1–11. doi:10.1016/0022-5088(66)90038-5
  15. Schmidt, F. A., Warner, J. C. (1967). Electrotransport of carbon, nitrogen and oxygen in vanadium. Journal of the Less Common Metals, 13 (5), 493–500. doi:10.1016/0022-5088(67)90084-7
  16. Peterson, D. T., Schmidt, F. A. (1969). Electrotransport of carbon, nitrogen and oxygen in lutetium. Journal of the Less Common Metals, 18 (2), 111–116. doi:10.1016/0022-5088(69)90129-5
  17. Peterson, D. T., Schmidt, F. A. (1971). Preparation of high purity thorium and thorium single crystals. Journal of the Less Common Metals, 24 (2), 223–228. doi:10.1016/0022-5088(71)90099-3
  18. Bradley, A. J. (1925). CX. The allotropy of manganese. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50 (299), 1018–1030. doi:10.1080/14786442508628546
  19. Mills, D., Craig, G. (1966). Etching dislocations in zirconium. Journal of Electrochemical Technology, 4, 300.
  20. Field, W. G., Wagner, R. W. (1968). Thermal imaging for single crystal growth and its application to ruby. Journal of Crystal Growth, 3–4, 799–803. doi:10.1016/0022-0248(68)90270-4
  21. Drabble, J. R. (1968). The arc transfer process of crystal growth. Journal of Crystal Growth, 3–4, 804–807. doi:10.1016/0022-0248(68)90271-6
  22. Gasson, D. B., Cockayne, B. (1970). Oxide crystal growth using gas lasers. Journal of Materials Science, 5 (2), 100–104. doi:10.1007/bf00554627
  23. Precht, W., Hollox, G. E. (1968). A floating zone technique for the growth of carbide single crystals. Journal of Crystal Growth, 3–4, 818–823. doi:10.1016/0022-0248(68)90274-1
  24. Esenski, B., Khartman, E. (1962). Nekotorye zamechaniya o roste i mekhanicheskikh svoystvakh nitevidnykh kristallov NaCl. Kristallografiya, 7, 433–436.
  25. Glester, H. (1981). Materials with ultra-fine grain size. Deformation of Polycrystals: Mechanisms and Microstructures. Roskilde: Ris. Nat. Laboratory, 21.
  26. Glester, H., Marquardt, P. (1984). Nanocrystalline structures – on approach to new materials. Zeitschrift fur Metallkunde, 75 (4), 263–267.
  27. Biirringer, R., Herr, U., Gleiler, H. (1986). Nanocrystalline materials: a first report. Trans. Japan/Inst. Met. Suppl., 27, 43–52.
  28. Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33 (4), 223–315. doi:10.1016/0079-6425(89)90001-7
  29. Siegel, R. W., Hahn, H. (1987). Nanjphase materials. Current Trends in Physics of materials. Singapore: World Sci. Publ. Co, 403–420.
  30. Siegel, R. W. (1994). What do we really know about the atomic-scale structures of nanophase materials? Journal of Physics and Chemistry of Solids, 55 (10), 1097–1106. doi:10.1016/0022-3697(94)90127-9
  31. Nitevidnye kristally i tonkie plenki. (1975). Nitevidnye kristally. Voronezh: VPI, 466.
  32. Nitevidnye kristally dlya novoy tekhniki. (1979). Voronezh: VPI, 231.
  33. Nitevidnye kristally i neferromagnitnye plenki. (1970). Part 1. Nitevidnye kristally. Voronezh: VPI, 287.
  34. Nitevidnye kristally i neferromagnitnye plenki. (1970). Part 2. Tonkie plenki. Voronezh: VPI, 300.
  35. Artemev, S. R. (2015). Present concepts of non-traditional methods of growing of metal whisker crystals. Pulling of whiskers from solution. Technology Audit and Production Reserves, 3 (4 (23)), 8–12. doi:10.15587/2312-8372.2015.42409
  36. Artemev, S. R. (2015). Current concepts of non-traditional methods of cultivation metal whisker crystals. Pulling whisker pole from melt. Technology Audit and Production Reserves, 2 (4 (22)), 16–19. doi:10.15587/2312-8372.2015.40499
  37. Artemev, S. R. (2013). Properties of whiskers. mechanical strength test. Technology Audit and Production Reserves, 6 (1 (14)), 4–7. doi:10.15587/2312-8372.2013.19533
  38. Artemev, S. R., Andronov, V. A., Semkiv, O. M. (2013). Mechanical properties of whiskers. Technology Audit and Production Reserves, 5 (1 (13)), 42–44. doi:10.15587/2312-8372.2013.18393
  39. Artemev, S. R. (2014). Study of whiskers’ mechanical properties. creep and internal friction. Technology Audit and Production Reserves, 5 (3 (19)), 16–18. doi:10.15587/2312-8372.2014.27909
  40. Artemev, S. R. (2015). Present concepts of non-traditional methods of growing of metal whisker crystals. Pulling of whiskers from solution. Technology Audit and Production Reserves, 3 (4 (23)), 8–12. doi:10.15587/2312-8372.2015.42409
  41. Artemev, S. R. (2016). Analysis of existent concepts of traditional methods of metal whiskers growing. Deposition of substance from the gas phase. Technology Audit and Production Reserves, 3 (3 (29)), 34–37. doi:10.15587/2312-8372.2016.70512
  42. Artemev, S. R., Shaporev, V. P., Tsymbal, B. M. (2018). Investigation of methods of obtaining whiskers in composite material. Technology Audit and Production Reserves, 1 (3 (39)), 8–14. doi:10.15587/2312-8372.2018.124287
  43. Artemev, S. R., Belan, S. V. (2013). Properties and basic methods of receipt of threadlike crystals. Eastern-European Journal of Enterprise Technologies, 5 (1 (65)), 22–26. Available at: http://journals.uran.ua/eejet/article/view/18160
  44. Ivanov, D. A., Sitnikov, A. I., Shlyapin, D. S. (2010). Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy. Moscow, 220.

Published

2017-12-28

How to Cite

Artemev, S., Shaporev, V., & Tsymbal, B. (2017). Research of methods of obtaining continuous fibres of whiskers. Technology Audit and Production Reserves, 2(3(40), 4–8. https://doi.org/10.15587/2312-8372.2018.126564

Issue

Section

Chemical and Technological Systems: Original Research